Find the best solutions to your problems with the help of IDNLearn.com. Join our knowledgeable community and get detailed, reliable answers to all your questions.
Sagot :
To solve the integral [tex]\(\int \frac{dx}{e^x + e^{-x}},\)[/tex] we need to strategically evaluate the integrand. Here is a step-by-step solution:
1. Integrand Simplification:
We start by recognizing the expression inside the integral:
[tex]\[ \int \frac{dx}{e^x + e^{-x}}. \][/tex]
Recall that [tex]\(e^x + e^{-x} = 2\cosh(x)\)[/tex], where [tex]\(\cosh(x)\)[/tex] is the hyperbolic cosine function. Thus, we can rewrite the integral as:
[tex]\[ \int \frac{dx}{2\cosh(x)}. \][/tex]
2. Using the property of hyperbolic functions:
We know that [tex]\(\cosh(x)\)[/tex] has the property:
[tex]\[ \cosh(x) = \frac{e^x + e^{-x}}{2}. \][/tex]
Substituting this back into our integral, we get:
[tex]\[ \int \frac{dx}{2\cosh(x)} = \int \frac{dx}{e^x + e^{-x}}. \][/tex]
Therefore, our integral simplifies to:
[tex]\[ \int \frac{dx}{2\cosh(x)} = \frac{1}{2} \int \frac{dx}{\cosh(x)}. \][/tex]
3. Integral of [tex]\(\frac{1}{\cosh(x)}\)[/tex]:
The integral of [tex]\(\frac{1}{\cosh(x)}\)[/tex] is a standard result related to the hyperbolic trigonometric function [tex]\(\sech(x)\)[/tex]:
[tex]\[ \int \sech(x) \, dx = 2 \arctan(e^x). \][/tex]
4. Putting it all together:
We apply the result from the standard integral:
[tex]\[ \int \frac{dx}{e^x + e^{-x}} = \frac{1}{2} \int \sech(x) \, dx = \frac{1}{2} \cdot 2 \arctan(e^x). \][/tex]
Simplifying this further:
[tex]\[ \int \frac{dx}{e^x + e^{-x}} = \arctan(e^x). \][/tex]
Therefore, the final result of the integral is:
[tex]\[ \boxed{\arctan(e^x) + C.} \][/tex]
Note that this solution may not immediately seem to correspond with the given answer, [tex]\(RootSum(4_z^2 + 1, \Lambda(_i, _i\log(-2_i + exp(-x))))\)[/tex], but it follows from standard techniques used in calculus. Both forms of the solution are valid interpretations of the integral’s result, typically converging when simplifying complex expressions.
1. Integrand Simplification:
We start by recognizing the expression inside the integral:
[tex]\[ \int \frac{dx}{e^x + e^{-x}}. \][/tex]
Recall that [tex]\(e^x + e^{-x} = 2\cosh(x)\)[/tex], where [tex]\(\cosh(x)\)[/tex] is the hyperbolic cosine function. Thus, we can rewrite the integral as:
[tex]\[ \int \frac{dx}{2\cosh(x)}. \][/tex]
2. Using the property of hyperbolic functions:
We know that [tex]\(\cosh(x)\)[/tex] has the property:
[tex]\[ \cosh(x) = \frac{e^x + e^{-x}}{2}. \][/tex]
Substituting this back into our integral, we get:
[tex]\[ \int \frac{dx}{2\cosh(x)} = \int \frac{dx}{e^x + e^{-x}}. \][/tex]
Therefore, our integral simplifies to:
[tex]\[ \int \frac{dx}{2\cosh(x)} = \frac{1}{2} \int \frac{dx}{\cosh(x)}. \][/tex]
3. Integral of [tex]\(\frac{1}{\cosh(x)}\)[/tex]:
The integral of [tex]\(\frac{1}{\cosh(x)}\)[/tex] is a standard result related to the hyperbolic trigonometric function [tex]\(\sech(x)\)[/tex]:
[tex]\[ \int \sech(x) \, dx = 2 \arctan(e^x). \][/tex]
4. Putting it all together:
We apply the result from the standard integral:
[tex]\[ \int \frac{dx}{e^x + e^{-x}} = \frac{1}{2} \int \sech(x) \, dx = \frac{1}{2} \cdot 2 \arctan(e^x). \][/tex]
Simplifying this further:
[tex]\[ \int \frac{dx}{e^x + e^{-x}} = \arctan(e^x). \][/tex]
Therefore, the final result of the integral is:
[tex]\[ \boxed{\arctan(e^x) + C.} \][/tex]
Note that this solution may not immediately seem to correspond with the given answer, [tex]\(RootSum(4_z^2 + 1, \Lambda(_i, _i\log(-2_i + exp(-x))))\)[/tex], but it follows from standard techniques used in calculus. Both forms of the solution are valid interpretations of the integral’s result, typically converging when simplifying complex expressions.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.