IDNLearn.com: Your trusted platform for finding precise and reliable answers. Join our knowledgeable community and access a wealth of reliable answers to your most pressing questions.

b) [tex] \int \frac{x^2 \, dx}{x^6-9} [/tex]

Sagot :

To solve the integral [tex]\(\int \frac{x^2 \, dx}{x^6 - 9}\)[/tex], let's work through it step by step.

First, observe that the denominator can be factored. Notice that:
[tex]\[ x^6 - 9 = (x^3)^2 - 3^2 \][/tex]
This is a difference of squares which can be factored as:
[tex]\[ x^6 - 9 = (x^3 - 3)(x^3 + 3) \][/tex]

Thus, the integral becomes:
[tex]\[ \int \frac{x^2 \, dx}{(x^3 - 3)(x^3 + 3)} \][/tex]

To proceed, we can use partial fraction decomposition to rewrite the integrand in a more manageable form:
[tex]\[ \frac{x^2}{(x^3 - 3)(x^3 + 3)} = \frac{A}{x^3 - 3} + \frac{B}{x^3 + 3} \][/tex]

To determine the constants [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we equate:
[tex]\[ x^2 = A(x^3 + 3) + B(x^3 - 3) \][/tex]

Setting the coefficients equal on both sides, we need [tex]\(A\)[/tex] and [tex]\(B\)[/tex] such that:
[tex]\[ x^2 = A x^3 + 3A + B x^3 - 3B \][/tex]

By collecting like terms, we get:
[tex]\[ x^2 = (A + B)x^3 + 3(A - B) \][/tex]

Since there is no [tex]\(x^3\)[/tex] term on the left-hand side, the coefficients of [tex]\(x^3\)[/tex] on the right-hand side must sum to zero:
[tex]\[ A + B = 0 \][/tex]
Moreover, the constant term on the right-hand side must match the [tex]\(x^2\)[/tex] term on the left-hand side:
[tex]\[ 3(A - B) = x^2 \][/tex]

From [tex]\(A + B = 0\)[/tex], we get [tex]\(B = -A\)[/tex]. Substituting this back into the equation for the constant term, we have:
[tex]\[ 3(A - (-A)) = x^2 \][/tex]
[tex]\[ 3(2A) = x^2 \][/tex]
[tex]\[ 6A = x^2 \][/tex]
[tex]\[ A = \frac{x^2}{6} \][/tex]
[tex]\[ B = -A = -\frac{x^2}{6} \][/tex]

Thus the partial fractions are:
[tex]\[ \frac{x^2}{(x^3 - 3)(x^3 + 3)} = \frac{\frac{x^2}{6}}{x^3 - 3} - \frac{\frac{x^2}{6}}{x^3 + 3} \][/tex]

Simplifying the integral, we have:
[tex]\[ \int \left( \frac{1}{6} \cdot \frac{x^2}{x^3 - 3} - \frac{1}{6} \cdot \frac{x^2}{x^3 + 3} \right) \, dx \][/tex]

Let us focus on integrating each term separately:
1. [tex]\(\frac{1}{6} \int \frac{x^2 \, dx}{x^3 - 3} \)[/tex]
2. [tex]\(-\frac{1}{6} \int \frac{x^2 \, dx}{x^3 + 3} \)[/tex]

For both integrals, we can use the substitution method. Let [tex]\(u = x^3 - 3\)[/tex], then [tex]\(du = 3x^2 \, dx\)[/tex] or [tex]\(\frac{du}{3} = x^2 \, dx\)[/tex]. Accordingly:
[tex]\[ \int \frac{x^2 \, dx}{x^3 - 3} = \int \frac{1}{3} \frac{du}{u} = \frac{1}{3} \ln |u| + C \][/tex]
Substituting back [tex]\(u = x^3 - 3\)[/tex], we get:
[tex]\[ \frac{1}{3} \ln |x^3 - 3| + C \][/tex]

Similarly, for the second integral, let [tex]\(v = x^3 + 3\)[/tex], then [tex]\(dv = 3x^2 \, dx\)[/tex] or [tex]\(\frac{dv}{3} = x^2 \, dx\)[/tex]:
[tex]\[ \int \frac{x^2 \, dx}{x^3 + 3} = \int \frac{1}{3} \frac{dv}{v} = \frac{1}{3} \ln |v| + C \][/tex]
Substituting back [tex]\(v = x^3 + 3\)[/tex], we get:
[tex]\[ \frac{1}{3} \ln |x^3 + 3| + C \][/tex]

Now, combining the two parts:
[tex]\[ \int \frac{x^2 \, dx}{x^6 - 9} = \frac{1}{6} \left( \frac{1}{3} \ln |x^3 - 3| \right) - \frac{1}{6} \left( \frac{1}{3} \ln |x^3 + 3| \right) \][/tex]

So, the final answer is:
[tex]\[ \frac{\ln |x^3 - 3|}{18} - \frac{\ln |x^3 + 3|}{18} + C \][/tex]

Therefore, the integral evaluates to:
[tex]\[ \int \frac{x^2 \, dx}{x^6 - 9} = \frac{\ln(x^3 - 3)}{18} - \frac{\ln(x^3 + 3)}{18} + C \][/tex]

Here, [tex]\(C\)[/tex] is the constant of integration.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your questions are important to us at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.