Explore a vast range of topics and get informed answers at IDNLearn.com. Ask any question and get a detailed, reliable answer from our community of experts.
Sagot :
To solve the integral [tex]\(\int \frac{x^2 \, dx}{x^6 - 9}\)[/tex], let's work through it step by step.
First, observe that the denominator can be factored. Notice that:
[tex]\[ x^6 - 9 = (x^3)^2 - 3^2 \][/tex]
This is a difference of squares which can be factored as:
[tex]\[ x^6 - 9 = (x^3 - 3)(x^3 + 3) \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{x^2 \, dx}{(x^3 - 3)(x^3 + 3)} \][/tex]
To proceed, we can use partial fraction decomposition to rewrite the integrand in a more manageable form:
[tex]\[ \frac{x^2}{(x^3 - 3)(x^3 + 3)} = \frac{A}{x^3 - 3} + \frac{B}{x^3 + 3} \][/tex]
To determine the constants [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we equate:
[tex]\[ x^2 = A(x^3 + 3) + B(x^3 - 3) \][/tex]
Setting the coefficients equal on both sides, we need [tex]\(A\)[/tex] and [tex]\(B\)[/tex] such that:
[tex]\[ x^2 = A x^3 + 3A + B x^3 - 3B \][/tex]
By collecting like terms, we get:
[tex]\[ x^2 = (A + B)x^3 + 3(A - B) \][/tex]
Since there is no [tex]\(x^3\)[/tex] term on the left-hand side, the coefficients of [tex]\(x^3\)[/tex] on the right-hand side must sum to zero:
[tex]\[ A + B = 0 \][/tex]
Moreover, the constant term on the right-hand side must match the [tex]\(x^2\)[/tex] term on the left-hand side:
[tex]\[ 3(A - B) = x^2 \][/tex]
From [tex]\(A + B = 0\)[/tex], we get [tex]\(B = -A\)[/tex]. Substituting this back into the equation for the constant term, we have:
[tex]\[ 3(A - (-A)) = x^2 \][/tex]
[tex]\[ 3(2A) = x^2 \][/tex]
[tex]\[ 6A = x^2 \][/tex]
[tex]\[ A = \frac{x^2}{6} \][/tex]
[tex]\[ B = -A = -\frac{x^2}{6} \][/tex]
Thus the partial fractions are:
[tex]\[ \frac{x^2}{(x^3 - 3)(x^3 + 3)} = \frac{\frac{x^2}{6}}{x^3 - 3} - \frac{\frac{x^2}{6}}{x^3 + 3} \][/tex]
Simplifying the integral, we have:
[tex]\[ \int \left( \frac{1}{6} \cdot \frac{x^2}{x^3 - 3} - \frac{1}{6} \cdot \frac{x^2}{x^3 + 3} \right) \, dx \][/tex]
Let us focus on integrating each term separately:
1. [tex]\(\frac{1}{6} \int \frac{x^2 \, dx}{x^3 - 3} \)[/tex]
2. [tex]\(-\frac{1}{6} \int \frac{x^2 \, dx}{x^3 + 3} \)[/tex]
For both integrals, we can use the substitution method. Let [tex]\(u = x^3 - 3\)[/tex], then [tex]\(du = 3x^2 \, dx\)[/tex] or [tex]\(\frac{du}{3} = x^2 \, dx\)[/tex]. Accordingly:
[tex]\[ \int \frac{x^2 \, dx}{x^3 - 3} = \int \frac{1}{3} \frac{du}{u} = \frac{1}{3} \ln |u| + C \][/tex]
Substituting back [tex]\(u = x^3 - 3\)[/tex], we get:
[tex]\[ \frac{1}{3} \ln |x^3 - 3| + C \][/tex]
Similarly, for the second integral, let [tex]\(v = x^3 + 3\)[/tex], then [tex]\(dv = 3x^2 \, dx\)[/tex] or [tex]\(\frac{dv}{3} = x^2 \, dx\)[/tex]:
[tex]\[ \int \frac{x^2 \, dx}{x^3 + 3} = \int \frac{1}{3} \frac{dv}{v} = \frac{1}{3} \ln |v| + C \][/tex]
Substituting back [tex]\(v = x^3 + 3\)[/tex], we get:
[tex]\[ \frac{1}{3} \ln |x^3 + 3| + C \][/tex]
Now, combining the two parts:
[tex]\[ \int \frac{x^2 \, dx}{x^6 - 9} = \frac{1}{6} \left( \frac{1}{3} \ln |x^3 - 3| \right) - \frac{1}{6} \left( \frac{1}{3} \ln |x^3 + 3| \right) \][/tex]
So, the final answer is:
[tex]\[ \frac{\ln |x^3 - 3|}{18} - \frac{\ln |x^3 + 3|}{18} + C \][/tex]
Therefore, the integral evaluates to:
[tex]\[ \int \frac{x^2 \, dx}{x^6 - 9} = \frac{\ln(x^3 - 3)}{18} - \frac{\ln(x^3 + 3)}{18} + C \][/tex]
Here, [tex]\(C\)[/tex] is the constant of integration.
First, observe that the denominator can be factored. Notice that:
[tex]\[ x^6 - 9 = (x^3)^2 - 3^2 \][/tex]
This is a difference of squares which can be factored as:
[tex]\[ x^6 - 9 = (x^3 - 3)(x^3 + 3) \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{x^2 \, dx}{(x^3 - 3)(x^3 + 3)} \][/tex]
To proceed, we can use partial fraction decomposition to rewrite the integrand in a more manageable form:
[tex]\[ \frac{x^2}{(x^3 - 3)(x^3 + 3)} = \frac{A}{x^3 - 3} + \frac{B}{x^3 + 3} \][/tex]
To determine the constants [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we equate:
[tex]\[ x^2 = A(x^3 + 3) + B(x^3 - 3) \][/tex]
Setting the coefficients equal on both sides, we need [tex]\(A\)[/tex] and [tex]\(B\)[/tex] such that:
[tex]\[ x^2 = A x^3 + 3A + B x^3 - 3B \][/tex]
By collecting like terms, we get:
[tex]\[ x^2 = (A + B)x^3 + 3(A - B) \][/tex]
Since there is no [tex]\(x^3\)[/tex] term on the left-hand side, the coefficients of [tex]\(x^3\)[/tex] on the right-hand side must sum to zero:
[tex]\[ A + B = 0 \][/tex]
Moreover, the constant term on the right-hand side must match the [tex]\(x^2\)[/tex] term on the left-hand side:
[tex]\[ 3(A - B) = x^2 \][/tex]
From [tex]\(A + B = 0\)[/tex], we get [tex]\(B = -A\)[/tex]. Substituting this back into the equation for the constant term, we have:
[tex]\[ 3(A - (-A)) = x^2 \][/tex]
[tex]\[ 3(2A) = x^2 \][/tex]
[tex]\[ 6A = x^2 \][/tex]
[tex]\[ A = \frac{x^2}{6} \][/tex]
[tex]\[ B = -A = -\frac{x^2}{6} \][/tex]
Thus the partial fractions are:
[tex]\[ \frac{x^2}{(x^3 - 3)(x^3 + 3)} = \frac{\frac{x^2}{6}}{x^3 - 3} - \frac{\frac{x^2}{6}}{x^3 + 3} \][/tex]
Simplifying the integral, we have:
[tex]\[ \int \left( \frac{1}{6} \cdot \frac{x^2}{x^3 - 3} - \frac{1}{6} \cdot \frac{x^2}{x^3 + 3} \right) \, dx \][/tex]
Let us focus on integrating each term separately:
1. [tex]\(\frac{1}{6} \int \frac{x^2 \, dx}{x^3 - 3} \)[/tex]
2. [tex]\(-\frac{1}{6} \int \frac{x^2 \, dx}{x^3 + 3} \)[/tex]
For both integrals, we can use the substitution method. Let [tex]\(u = x^3 - 3\)[/tex], then [tex]\(du = 3x^2 \, dx\)[/tex] or [tex]\(\frac{du}{3} = x^2 \, dx\)[/tex]. Accordingly:
[tex]\[ \int \frac{x^2 \, dx}{x^3 - 3} = \int \frac{1}{3} \frac{du}{u} = \frac{1}{3} \ln |u| + C \][/tex]
Substituting back [tex]\(u = x^3 - 3\)[/tex], we get:
[tex]\[ \frac{1}{3} \ln |x^3 - 3| + C \][/tex]
Similarly, for the second integral, let [tex]\(v = x^3 + 3\)[/tex], then [tex]\(dv = 3x^2 \, dx\)[/tex] or [tex]\(\frac{dv}{3} = x^2 \, dx\)[/tex]:
[tex]\[ \int \frac{x^2 \, dx}{x^3 + 3} = \int \frac{1}{3} \frac{dv}{v} = \frac{1}{3} \ln |v| + C \][/tex]
Substituting back [tex]\(v = x^3 + 3\)[/tex], we get:
[tex]\[ \frac{1}{3} \ln |x^3 + 3| + C \][/tex]
Now, combining the two parts:
[tex]\[ \int \frac{x^2 \, dx}{x^6 - 9} = \frac{1}{6} \left( \frac{1}{3} \ln |x^3 - 3| \right) - \frac{1}{6} \left( \frac{1}{3} \ln |x^3 + 3| \right) \][/tex]
So, the final answer is:
[tex]\[ \frac{\ln |x^3 - 3|}{18} - \frac{\ln |x^3 + 3|}{18} + C \][/tex]
Therefore, the integral evaluates to:
[tex]\[ \int \frac{x^2 \, dx}{x^6 - 9} = \frac{\ln(x^3 - 3)}{18} - \frac{\ln(x^3 + 3)}{18} + C \][/tex]
Here, [tex]\(C\)[/tex] is the constant of integration.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.