IDNLearn.com offers a comprehensive solution for all your question and answer needs. Our experts are ready to provide prompt and detailed answers to any questions you may have.
Sagot :
To solve this problem, we can use the ideal gas law, which is given by:
[tex]\[ PV = nRT \][/tex]
Here:
- [tex]\( P \)[/tex] is the absolute pressure in kilopascals (kPa),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles of gas,
- [tex]\( R \)[/tex] is the ideal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).
First, let's convert the given temperature from Celsius to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 \][/tex]
[tex]\[ T(K) = 32°C + 273.15 = 305.15 K \][/tex]
Next, we need to convert the gauge pressure to absolute pressure. Gauge pressure is the pressure relative to atmospheric pressure:
[tex]\[ \text{Absolute pressure} = \text{Gauge pressure} + \text{Atmospheric pressure} \][/tex]
[tex]\[ P = 61 \text{ kPa} + 101.3 \text{ kPa} = 162.3 \text{ kPa} \][/tex]
We are given:
- [tex]\( V = 5.2 \text{ L} \)[/tex],
- [tex]\( R = 8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}} \)[/tex],
- [tex]\( T = 305.15 \text{ K} \)[/tex],
- [tex]\( P = 162.3 \text{ kPa} \)[/tex].
Now, we can rearrange the ideal gas law equation to solve for the number of moles [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the known values:
[tex]\[ n = \frac{(162.3 \text{ kPa}) \times (5.2 \text{ L})}{(8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}}) \times (305.15 \text{ K})} \][/tex]
Calculating this, we get:
[tex]\[ n \approx 0.33 \text{ mol} \][/tex]
Thus, the number of moles of air in the soccer ball is approximately [tex]\( 0.33 \text{ mol} \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{B. \ 0.33 \text{ mol}} \][/tex]
[tex]\[ PV = nRT \][/tex]
Here:
- [tex]\( P \)[/tex] is the absolute pressure in kilopascals (kPa),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles of gas,
- [tex]\( R \)[/tex] is the ideal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).
First, let's convert the given temperature from Celsius to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 \][/tex]
[tex]\[ T(K) = 32°C + 273.15 = 305.15 K \][/tex]
Next, we need to convert the gauge pressure to absolute pressure. Gauge pressure is the pressure relative to atmospheric pressure:
[tex]\[ \text{Absolute pressure} = \text{Gauge pressure} + \text{Atmospheric pressure} \][/tex]
[tex]\[ P = 61 \text{ kPa} + 101.3 \text{ kPa} = 162.3 \text{ kPa} \][/tex]
We are given:
- [tex]\( V = 5.2 \text{ L} \)[/tex],
- [tex]\( R = 8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}} \)[/tex],
- [tex]\( T = 305.15 \text{ K} \)[/tex],
- [tex]\( P = 162.3 \text{ kPa} \)[/tex].
Now, we can rearrange the ideal gas law equation to solve for the number of moles [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the known values:
[tex]\[ n = \frac{(162.3 \text{ kPa}) \times (5.2 \text{ L})}{(8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}}) \times (305.15 \text{ K})} \][/tex]
Calculating this, we get:
[tex]\[ n \approx 0.33 \text{ mol} \][/tex]
Thus, the number of moles of air in the soccer ball is approximately [tex]\( 0.33 \text{ mol} \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{B. \ 0.33 \text{ mol}} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.