IDNLearn.com: Your go-to resource for finding expert answers. Our Q&A platform offers reliable and thorough answers to help you make informed decisions quickly and easily.
Sagot :
To solve this problem, we can use the ideal gas law, which is given by:
[tex]\[ PV = nRT \][/tex]
Here:
- [tex]\( P \)[/tex] is the absolute pressure in kilopascals (kPa),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles of gas,
- [tex]\( R \)[/tex] is the ideal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).
First, let's convert the given temperature from Celsius to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 \][/tex]
[tex]\[ T(K) = 32°C + 273.15 = 305.15 K \][/tex]
Next, we need to convert the gauge pressure to absolute pressure. Gauge pressure is the pressure relative to atmospheric pressure:
[tex]\[ \text{Absolute pressure} = \text{Gauge pressure} + \text{Atmospheric pressure} \][/tex]
[tex]\[ P = 61 \text{ kPa} + 101.3 \text{ kPa} = 162.3 \text{ kPa} \][/tex]
We are given:
- [tex]\( V = 5.2 \text{ L} \)[/tex],
- [tex]\( R = 8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}} \)[/tex],
- [tex]\( T = 305.15 \text{ K} \)[/tex],
- [tex]\( P = 162.3 \text{ kPa} \)[/tex].
Now, we can rearrange the ideal gas law equation to solve for the number of moles [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the known values:
[tex]\[ n = \frac{(162.3 \text{ kPa}) \times (5.2 \text{ L})}{(8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}}) \times (305.15 \text{ K})} \][/tex]
Calculating this, we get:
[tex]\[ n \approx 0.33 \text{ mol} \][/tex]
Thus, the number of moles of air in the soccer ball is approximately [tex]\( 0.33 \text{ mol} \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{B. \ 0.33 \text{ mol}} \][/tex]
[tex]\[ PV = nRT \][/tex]
Here:
- [tex]\( P \)[/tex] is the absolute pressure in kilopascals (kPa),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles of gas,
- [tex]\( R \)[/tex] is the ideal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).
First, let's convert the given temperature from Celsius to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 \][/tex]
[tex]\[ T(K) = 32°C + 273.15 = 305.15 K \][/tex]
Next, we need to convert the gauge pressure to absolute pressure. Gauge pressure is the pressure relative to atmospheric pressure:
[tex]\[ \text{Absolute pressure} = \text{Gauge pressure} + \text{Atmospheric pressure} \][/tex]
[tex]\[ P = 61 \text{ kPa} + 101.3 \text{ kPa} = 162.3 \text{ kPa} \][/tex]
We are given:
- [tex]\( V = 5.2 \text{ L} \)[/tex],
- [tex]\( R = 8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}} \)[/tex],
- [tex]\( T = 305.15 \text{ K} \)[/tex],
- [tex]\( P = 162.3 \text{ kPa} \)[/tex].
Now, we can rearrange the ideal gas law equation to solve for the number of moles [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the known values:
[tex]\[ n = \frac{(162.3 \text{ kPa}) \times (5.2 \text{ L})}{(8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}}) \times (305.15 \text{ K})} \][/tex]
Calculating this, we get:
[tex]\[ n \approx 0.33 \text{ mol} \][/tex]
Thus, the number of moles of air in the soccer ball is approximately [tex]\( 0.33 \text{ mol} \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{B. \ 0.33 \text{ mol}} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.