IDNLearn.com provides a collaborative environment for finding and sharing knowledge. Ask any question and receive accurate, in-depth responses from our dedicated team of experts.
Sagot :
To solve this problem, we can use the ideal gas law, which is given by:
[tex]\[ PV = nRT \][/tex]
Here:
- [tex]\( P \)[/tex] is the absolute pressure in kilopascals (kPa),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles of gas,
- [tex]\( R \)[/tex] is the ideal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).
First, let's convert the given temperature from Celsius to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 \][/tex]
[tex]\[ T(K) = 32°C + 273.15 = 305.15 K \][/tex]
Next, we need to convert the gauge pressure to absolute pressure. Gauge pressure is the pressure relative to atmospheric pressure:
[tex]\[ \text{Absolute pressure} = \text{Gauge pressure} + \text{Atmospheric pressure} \][/tex]
[tex]\[ P = 61 \text{ kPa} + 101.3 \text{ kPa} = 162.3 \text{ kPa} \][/tex]
We are given:
- [tex]\( V = 5.2 \text{ L} \)[/tex],
- [tex]\( R = 8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}} \)[/tex],
- [tex]\( T = 305.15 \text{ K} \)[/tex],
- [tex]\( P = 162.3 \text{ kPa} \)[/tex].
Now, we can rearrange the ideal gas law equation to solve for the number of moles [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the known values:
[tex]\[ n = \frac{(162.3 \text{ kPa}) \times (5.2 \text{ L})}{(8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}}) \times (305.15 \text{ K})} \][/tex]
Calculating this, we get:
[tex]\[ n \approx 0.33 \text{ mol} \][/tex]
Thus, the number of moles of air in the soccer ball is approximately [tex]\( 0.33 \text{ mol} \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{B. \ 0.33 \text{ mol}} \][/tex]
[tex]\[ PV = nRT \][/tex]
Here:
- [tex]\( P \)[/tex] is the absolute pressure in kilopascals (kPa),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles of gas,
- [tex]\( R \)[/tex] is the ideal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).
First, let's convert the given temperature from Celsius to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 \][/tex]
[tex]\[ T(K) = 32°C + 273.15 = 305.15 K \][/tex]
Next, we need to convert the gauge pressure to absolute pressure. Gauge pressure is the pressure relative to atmospheric pressure:
[tex]\[ \text{Absolute pressure} = \text{Gauge pressure} + \text{Atmospheric pressure} \][/tex]
[tex]\[ P = 61 \text{ kPa} + 101.3 \text{ kPa} = 162.3 \text{ kPa} \][/tex]
We are given:
- [tex]\( V = 5.2 \text{ L} \)[/tex],
- [tex]\( R = 8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}} \)[/tex],
- [tex]\( T = 305.15 \text{ K} \)[/tex],
- [tex]\( P = 162.3 \text{ kPa} \)[/tex].
Now, we can rearrange the ideal gas law equation to solve for the number of moles [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the known values:
[tex]\[ n = \frac{(162.3 \text{ kPa}) \times (5.2 \text{ L})}{(8.314 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}}) \times (305.15 \text{ K})} \][/tex]
Calculating this, we get:
[tex]\[ n \approx 0.33 \text{ mol} \][/tex]
Thus, the number of moles of air in the soccer ball is approximately [tex]\( 0.33 \text{ mol} \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{B. \ 0.33 \text{ mol}} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.