Find answers to your questions and expand your knowledge with IDNLearn.com. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.

9. When a certain metal was irradiated with light of frequency [tex]$0.4 \times 10^{13} \text{ Hz}$[/tex], the photoelectrons emitted had twice the kinetic energy as those emitted when the same metal was irradiated with light of frequency [tex]$1.0 \times 10^{13} \text{ Hz}$[/tex]. Calculate the threshold frequency [tex][tex]$v_0$[/tex][/tex] for the metal.

A. [tex]$1.6 \times 10^{10} \text{ Hz}$[/tex]
B. [tex]$1.6 \times 10^{-13} \text{ Hz}$[/tex]
C. [tex][tex]$1.6 \times 10^{13} \text{ Hz}$[/tex][/tex]
D. none of these


Sagot :

To solve this problem, let's use Einstein's photoelectric equation:

[tex]\[ K.E = h (f - f_0) \][/tex]

where:
- [tex]\( K.E \)[/tex] is the kinetic energy of the emitted photoelectrons,
- [tex]\( h \)[/tex] is Planck's constant,
- [tex]\( f \)[/tex] is the frequency of the incident light,
- [tex]\( f_0 \)[/tex] is the threshold frequency for the metal.

Given:
- Frequency [tex]\( f_1 = 0.4 \times 10^{13} \text{ Hz} \)[/tex]
- Frequency [tex]\( f_2 = 1.0 \times 10^{13} \text{ Hz} \)[/tex]
- The kinetic energy of photoelectrons emitted with frequency [tex]\( f_1 \)[/tex] is twice that of those emitted with frequency [tex]\( f_2 \)[/tex], i.e., [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]

From the photoelectric equation, we have:
[tex]\[ K.E_1 = h (f_1 - f_0) \][/tex]
[tex]\[ K.E_2 = h (f_2 - f_0) \][/tex]

Given [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]:

[tex]\[ h (f_1 - f_0) = 2 \times h (f_2 - f_0) \][/tex]

We can simplify this by dividing through by Planck's constant [tex]\( h \)[/tex]:

[tex]\[ f_1 - f_0 = 2 (f_2 - f_0) \][/tex]

Expanding the right-hand side:

[tex]\[ f_1 - f_0 = 2f_2 - 2f_0 \][/tex]

Rearranging terms to isolate [tex]\( f_0 \)[/tex]:

[tex]\[ f_1 + f_0 = 2f_2 \][/tex]
[tex]\[ f_0 = 2f_2 - f_1 \][/tex]

Substituting the given values of [tex]\( f_1 \)[/tex] and [tex]\( f_2 \)[/tex]:

[tex]\[ f_0 = 2 \times (1.0 \times 10^{13}) - (0.4 \times 10^{13}) \][/tex]
[tex]\[ f_0 = 2.0 \times 10^{13} - 0.4 \times 10^{13} \][/tex]
[tex]\[ f_0 = 1.6 \times 10^{13} \, \text{Hz} \][/tex]

Therefore, the threshold frequency for the metal is:

[tex]\[ \boxed{1.6 \times 10^{13} \text{ Hz}} \][/tex]

So the correct answer is (C) [tex]\(1.6 \times 10^{13} \text{ Hz}\)[/tex].