Find answers to your questions and expand your knowledge with IDNLearn.com. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.
Sagot :
To solve this problem, let's use Einstein's photoelectric equation:
[tex]\[ K.E = h (f - f_0) \][/tex]
where:
- [tex]\( K.E \)[/tex] is the kinetic energy of the emitted photoelectrons,
- [tex]\( h \)[/tex] is Planck's constant,
- [tex]\( f \)[/tex] is the frequency of the incident light,
- [tex]\( f_0 \)[/tex] is the threshold frequency for the metal.
Given:
- Frequency [tex]\( f_1 = 0.4 \times 10^{13} \text{ Hz} \)[/tex]
- Frequency [tex]\( f_2 = 1.0 \times 10^{13} \text{ Hz} \)[/tex]
- The kinetic energy of photoelectrons emitted with frequency [tex]\( f_1 \)[/tex] is twice that of those emitted with frequency [tex]\( f_2 \)[/tex], i.e., [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]
From the photoelectric equation, we have:
[tex]\[ K.E_1 = h (f_1 - f_0) \][/tex]
[tex]\[ K.E_2 = h (f_2 - f_0) \][/tex]
Given [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]:
[tex]\[ h (f_1 - f_0) = 2 \times h (f_2 - f_0) \][/tex]
We can simplify this by dividing through by Planck's constant [tex]\( h \)[/tex]:
[tex]\[ f_1 - f_0 = 2 (f_2 - f_0) \][/tex]
Expanding the right-hand side:
[tex]\[ f_1 - f_0 = 2f_2 - 2f_0 \][/tex]
Rearranging terms to isolate [tex]\( f_0 \)[/tex]:
[tex]\[ f_1 + f_0 = 2f_2 \][/tex]
[tex]\[ f_0 = 2f_2 - f_1 \][/tex]
Substituting the given values of [tex]\( f_1 \)[/tex] and [tex]\( f_2 \)[/tex]:
[tex]\[ f_0 = 2 \times (1.0 \times 10^{13}) - (0.4 \times 10^{13}) \][/tex]
[tex]\[ f_0 = 2.0 \times 10^{13} - 0.4 \times 10^{13} \][/tex]
[tex]\[ f_0 = 1.6 \times 10^{13} \, \text{Hz} \][/tex]
Therefore, the threshold frequency for the metal is:
[tex]\[ \boxed{1.6 \times 10^{13} \text{ Hz}} \][/tex]
So the correct answer is (C) [tex]\(1.6 \times 10^{13} \text{ Hz}\)[/tex].
[tex]\[ K.E = h (f - f_0) \][/tex]
where:
- [tex]\( K.E \)[/tex] is the kinetic energy of the emitted photoelectrons,
- [tex]\( h \)[/tex] is Planck's constant,
- [tex]\( f \)[/tex] is the frequency of the incident light,
- [tex]\( f_0 \)[/tex] is the threshold frequency for the metal.
Given:
- Frequency [tex]\( f_1 = 0.4 \times 10^{13} \text{ Hz} \)[/tex]
- Frequency [tex]\( f_2 = 1.0 \times 10^{13} \text{ Hz} \)[/tex]
- The kinetic energy of photoelectrons emitted with frequency [tex]\( f_1 \)[/tex] is twice that of those emitted with frequency [tex]\( f_2 \)[/tex], i.e., [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]
From the photoelectric equation, we have:
[tex]\[ K.E_1 = h (f_1 - f_0) \][/tex]
[tex]\[ K.E_2 = h (f_2 - f_0) \][/tex]
Given [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]:
[tex]\[ h (f_1 - f_0) = 2 \times h (f_2 - f_0) \][/tex]
We can simplify this by dividing through by Planck's constant [tex]\( h \)[/tex]:
[tex]\[ f_1 - f_0 = 2 (f_2 - f_0) \][/tex]
Expanding the right-hand side:
[tex]\[ f_1 - f_0 = 2f_2 - 2f_0 \][/tex]
Rearranging terms to isolate [tex]\( f_0 \)[/tex]:
[tex]\[ f_1 + f_0 = 2f_2 \][/tex]
[tex]\[ f_0 = 2f_2 - f_1 \][/tex]
Substituting the given values of [tex]\( f_1 \)[/tex] and [tex]\( f_2 \)[/tex]:
[tex]\[ f_0 = 2 \times (1.0 \times 10^{13}) - (0.4 \times 10^{13}) \][/tex]
[tex]\[ f_0 = 2.0 \times 10^{13} - 0.4 \times 10^{13} \][/tex]
[tex]\[ f_0 = 1.6 \times 10^{13} \, \text{Hz} \][/tex]
Therefore, the threshold frequency for the metal is:
[tex]\[ \boxed{1.6 \times 10^{13} \text{ Hz}} \][/tex]
So the correct answer is (C) [tex]\(1.6 \times 10^{13} \text{ Hz}\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.