Explore a diverse range of topics and get expert answers on IDNLearn.com. Our experts are ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To solve this problem, let's use Einstein's photoelectric equation:
[tex]\[ K.E = h (f - f_0) \][/tex]
where:
- [tex]\( K.E \)[/tex] is the kinetic energy of the emitted photoelectrons,
- [tex]\( h \)[/tex] is Planck's constant,
- [tex]\( f \)[/tex] is the frequency of the incident light,
- [tex]\( f_0 \)[/tex] is the threshold frequency for the metal.
Given:
- Frequency [tex]\( f_1 = 0.4 \times 10^{13} \text{ Hz} \)[/tex]
- Frequency [tex]\( f_2 = 1.0 \times 10^{13} \text{ Hz} \)[/tex]
- The kinetic energy of photoelectrons emitted with frequency [tex]\( f_1 \)[/tex] is twice that of those emitted with frequency [tex]\( f_2 \)[/tex], i.e., [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]
From the photoelectric equation, we have:
[tex]\[ K.E_1 = h (f_1 - f_0) \][/tex]
[tex]\[ K.E_2 = h (f_2 - f_0) \][/tex]
Given [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]:
[tex]\[ h (f_1 - f_0) = 2 \times h (f_2 - f_0) \][/tex]
We can simplify this by dividing through by Planck's constant [tex]\( h \)[/tex]:
[tex]\[ f_1 - f_0 = 2 (f_2 - f_0) \][/tex]
Expanding the right-hand side:
[tex]\[ f_1 - f_0 = 2f_2 - 2f_0 \][/tex]
Rearranging terms to isolate [tex]\( f_0 \)[/tex]:
[tex]\[ f_1 + f_0 = 2f_2 \][/tex]
[tex]\[ f_0 = 2f_2 - f_1 \][/tex]
Substituting the given values of [tex]\( f_1 \)[/tex] and [tex]\( f_2 \)[/tex]:
[tex]\[ f_0 = 2 \times (1.0 \times 10^{13}) - (0.4 \times 10^{13}) \][/tex]
[tex]\[ f_0 = 2.0 \times 10^{13} - 0.4 \times 10^{13} \][/tex]
[tex]\[ f_0 = 1.6 \times 10^{13} \, \text{Hz} \][/tex]
Therefore, the threshold frequency for the metal is:
[tex]\[ \boxed{1.6 \times 10^{13} \text{ Hz}} \][/tex]
So the correct answer is (C) [tex]\(1.6 \times 10^{13} \text{ Hz}\)[/tex].
[tex]\[ K.E = h (f - f_0) \][/tex]
where:
- [tex]\( K.E \)[/tex] is the kinetic energy of the emitted photoelectrons,
- [tex]\( h \)[/tex] is Planck's constant,
- [tex]\( f \)[/tex] is the frequency of the incident light,
- [tex]\( f_0 \)[/tex] is the threshold frequency for the metal.
Given:
- Frequency [tex]\( f_1 = 0.4 \times 10^{13} \text{ Hz} \)[/tex]
- Frequency [tex]\( f_2 = 1.0 \times 10^{13} \text{ Hz} \)[/tex]
- The kinetic energy of photoelectrons emitted with frequency [tex]\( f_1 \)[/tex] is twice that of those emitted with frequency [tex]\( f_2 \)[/tex], i.e., [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]
From the photoelectric equation, we have:
[tex]\[ K.E_1 = h (f_1 - f_0) \][/tex]
[tex]\[ K.E_2 = h (f_2 - f_0) \][/tex]
Given [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]:
[tex]\[ h (f_1 - f_0) = 2 \times h (f_2 - f_0) \][/tex]
We can simplify this by dividing through by Planck's constant [tex]\( h \)[/tex]:
[tex]\[ f_1 - f_0 = 2 (f_2 - f_0) \][/tex]
Expanding the right-hand side:
[tex]\[ f_1 - f_0 = 2f_2 - 2f_0 \][/tex]
Rearranging terms to isolate [tex]\( f_0 \)[/tex]:
[tex]\[ f_1 + f_0 = 2f_2 \][/tex]
[tex]\[ f_0 = 2f_2 - f_1 \][/tex]
Substituting the given values of [tex]\( f_1 \)[/tex] and [tex]\( f_2 \)[/tex]:
[tex]\[ f_0 = 2 \times (1.0 \times 10^{13}) - (0.4 \times 10^{13}) \][/tex]
[tex]\[ f_0 = 2.0 \times 10^{13} - 0.4 \times 10^{13} \][/tex]
[tex]\[ f_0 = 1.6 \times 10^{13} \, \text{Hz} \][/tex]
Therefore, the threshold frequency for the metal is:
[tex]\[ \boxed{1.6 \times 10^{13} \text{ Hz}} \][/tex]
So the correct answer is (C) [tex]\(1.6 \times 10^{13} \text{ Hz}\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.