From simple queries to complex problems, IDNLearn.com provides reliable answers. Discover comprehensive answers to your questions from our community of experienced professionals.
Sagot :
To solve this problem, let's use Einstein's photoelectric equation:
[tex]\[ K.E = h (f - f_0) \][/tex]
where:
- [tex]\( K.E \)[/tex] is the kinetic energy of the emitted photoelectrons,
- [tex]\( h \)[/tex] is Planck's constant,
- [tex]\( f \)[/tex] is the frequency of the incident light,
- [tex]\( f_0 \)[/tex] is the threshold frequency for the metal.
Given:
- Frequency [tex]\( f_1 = 0.4 \times 10^{13} \text{ Hz} \)[/tex]
- Frequency [tex]\( f_2 = 1.0 \times 10^{13} \text{ Hz} \)[/tex]
- The kinetic energy of photoelectrons emitted with frequency [tex]\( f_1 \)[/tex] is twice that of those emitted with frequency [tex]\( f_2 \)[/tex], i.e., [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]
From the photoelectric equation, we have:
[tex]\[ K.E_1 = h (f_1 - f_0) \][/tex]
[tex]\[ K.E_2 = h (f_2 - f_0) \][/tex]
Given [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]:
[tex]\[ h (f_1 - f_0) = 2 \times h (f_2 - f_0) \][/tex]
We can simplify this by dividing through by Planck's constant [tex]\( h \)[/tex]:
[tex]\[ f_1 - f_0 = 2 (f_2 - f_0) \][/tex]
Expanding the right-hand side:
[tex]\[ f_1 - f_0 = 2f_2 - 2f_0 \][/tex]
Rearranging terms to isolate [tex]\( f_0 \)[/tex]:
[tex]\[ f_1 + f_0 = 2f_2 \][/tex]
[tex]\[ f_0 = 2f_2 - f_1 \][/tex]
Substituting the given values of [tex]\( f_1 \)[/tex] and [tex]\( f_2 \)[/tex]:
[tex]\[ f_0 = 2 \times (1.0 \times 10^{13}) - (0.4 \times 10^{13}) \][/tex]
[tex]\[ f_0 = 2.0 \times 10^{13} - 0.4 \times 10^{13} \][/tex]
[tex]\[ f_0 = 1.6 \times 10^{13} \, \text{Hz} \][/tex]
Therefore, the threshold frequency for the metal is:
[tex]\[ \boxed{1.6 \times 10^{13} \text{ Hz}} \][/tex]
So the correct answer is (C) [tex]\(1.6 \times 10^{13} \text{ Hz}\)[/tex].
[tex]\[ K.E = h (f - f_0) \][/tex]
where:
- [tex]\( K.E \)[/tex] is the kinetic energy of the emitted photoelectrons,
- [tex]\( h \)[/tex] is Planck's constant,
- [tex]\( f \)[/tex] is the frequency of the incident light,
- [tex]\( f_0 \)[/tex] is the threshold frequency for the metal.
Given:
- Frequency [tex]\( f_1 = 0.4 \times 10^{13} \text{ Hz} \)[/tex]
- Frequency [tex]\( f_2 = 1.0 \times 10^{13} \text{ Hz} \)[/tex]
- The kinetic energy of photoelectrons emitted with frequency [tex]\( f_1 \)[/tex] is twice that of those emitted with frequency [tex]\( f_2 \)[/tex], i.e., [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]
From the photoelectric equation, we have:
[tex]\[ K.E_1 = h (f_1 - f_0) \][/tex]
[tex]\[ K.E_2 = h (f_2 - f_0) \][/tex]
Given [tex]\( K.E_1 = 2 \times K.E_2 \)[/tex]:
[tex]\[ h (f_1 - f_0) = 2 \times h (f_2 - f_0) \][/tex]
We can simplify this by dividing through by Planck's constant [tex]\( h \)[/tex]:
[tex]\[ f_1 - f_0 = 2 (f_2 - f_0) \][/tex]
Expanding the right-hand side:
[tex]\[ f_1 - f_0 = 2f_2 - 2f_0 \][/tex]
Rearranging terms to isolate [tex]\( f_0 \)[/tex]:
[tex]\[ f_1 + f_0 = 2f_2 \][/tex]
[tex]\[ f_0 = 2f_2 - f_1 \][/tex]
Substituting the given values of [tex]\( f_1 \)[/tex] and [tex]\( f_2 \)[/tex]:
[tex]\[ f_0 = 2 \times (1.0 \times 10^{13}) - (0.4 \times 10^{13}) \][/tex]
[tex]\[ f_0 = 2.0 \times 10^{13} - 0.4 \times 10^{13} \][/tex]
[tex]\[ f_0 = 1.6 \times 10^{13} \, \text{Hz} \][/tex]
Therefore, the threshold frequency for the metal is:
[tex]\[ \boxed{1.6 \times 10^{13} \text{ Hz}} \][/tex]
So the correct answer is (C) [tex]\(1.6 \times 10^{13} \text{ Hz}\)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.