Get the most out of your questions with the extensive resources available on IDNLearn.com. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
To graph the function [tex]\( f(x) = \frac{2}{x+1} - 3 \)[/tex], we'll follow several steps to understand its behavior and sketch its graph.
1. Identify Key Features:
- Vertical Asymptote: The function [tex]\( f(x) = \frac{2}{x+1} - 3 \)[/tex] has a vertical asymptote where the denominator is zero. The denominator [tex]\( x+1 \)[/tex] is zero when [tex]\( x = -1 \)[/tex]. So, there is a vertical asymptote at [tex]\( x = -1 \)[/tex].
- Horizontal Asymptote: As [tex]\( x \)[/tex] goes to [tex]\(\pm\infty\)[/tex], [tex]\( \frac{2}{x+1} \)[/tex] approaches zero, and thus [tex]\( f(x) \)[/tex] approaches [tex]\( -3 \)[/tex]. Therefore, there is a horizontal asymptote at [tex]\( y = -3 \)[/tex].
2. Intercepts:
- X-Intercept: Set [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ \frac{2}{x+1} - 3 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ \frac{2}{x+1} = 3 \][/tex]
[tex]\[ 2 = 3(x+1) \][/tex]
[tex]\[ 2 = 3x + 3 \][/tex]
[tex]\[ 3x = -1 \][/tex]
[tex]\[ x = -\frac{1}{3} \][/tex]
So, the x-intercept is at [tex]\( \left( -\frac{1}{3}, 0 \right) \)[/tex].
- Y-Intercept: Set [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{2}{0+1} - 3 = 2 - 3 = -1 \][/tex]
So, the y-intercept is at [tex]\( (0, -1) \)[/tex].
3. Behavior Near the Asymptotes:
- As [tex]\( x \)[/tex] approaches [tex]\( -1 \)[/tex] from the left ([tex]\( x \rightarrow -1^- \)[/tex]), [tex]\( \frac{2}{x+1} \)[/tex] becomes very large negatively, making [tex]\( f(x) \)[/tex] approach [tex]\( -\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( -1 \)[/tex] from the right ([tex]\( x \rightarrow -1^+ \)[/tex]), [tex]\( \frac{2}{x+1} \)[/tex] becomes very large positively, making [tex]\( f(x) \)[/tex] approach [tex]\( \infty \)[/tex].
4. Plotting Points:
- To further understand the shape, we can evaluate the function at a few more points and plot them:
[tex]\[ f(-2) = \frac{2}{-2+1} - 3 = \frac{2}{-1} - 3 = -2 - 3 = -5 \][/tex]
[tex]\[ f(1) = \frac{2}{1+1} - 3 = \frac{2}{2} - 3 = 1 - 3 = -2 \][/tex]
5. Sketch the Graph:
- Draw vertical asymptote at [tex]\( x = -1 \)[/tex].
- Draw horizontal asymptote at [tex]\( y = -3 \)[/tex].
- Plot the intercepts: [tex]\( \left( -\frac{1}{3}, 0 \right) \)[/tex] and [tex]\( (0, -1) \)[/tex].
- Plot additional points like [tex]\( (-2, -5) \)[/tex] and [tex]\( (1, -2) \)[/tex].
By connecting these points and behavior patterns, the graph of [tex]\( f(x) = \frac{2}{x+1} - 3 \)[/tex] will look like this:
[tex]\[ \begin{tikzpicture} \begin{axis}[ axis lines = middle, xlabel = {$x$}, ylabel = {$f(x)$}, xmin=-3,xmax=3, ymin=-8,ymax=2, xtick={-3,-2,-1,0,1,2,3}, ytick={-8,-6,-4,-3,-2,0,1,2}, ] % Vertical asymptote \addplot[dashed, samples=2, domain=-3:3] {x==-1 ? -1e16 : 1/0}; % Horizontal asymptote \addplot[dashed, samples=2, domain=-3:3] {-3}; % The actual graph \addplot[domain=-3:-1.1, samples=100, thick] {2/(x+1) - 3}; \addplot[domain=-0.9:3, samples=100, thick] {2/(x+1) - 3}; % Adding key points \addplot[only marks, mark=*] coordinates{(-1/3, 0) (0, -1) (-2, -5) (1, -2)}; \end{axis} \end{tikzpicture} \][/tex]
1. Identify Key Features:
- Vertical Asymptote: The function [tex]\( f(x) = \frac{2}{x+1} - 3 \)[/tex] has a vertical asymptote where the denominator is zero. The denominator [tex]\( x+1 \)[/tex] is zero when [tex]\( x = -1 \)[/tex]. So, there is a vertical asymptote at [tex]\( x = -1 \)[/tex].
- Horizontal Asymptote: As [tex]\( x \)[/tex] goes to [tex]\(\pm\infty\)[/tex], [tex]\( \frac{2}{x+1} \)[/tex] approaches zero, and thus [tex]\( f(x) \)[/tex] approaches [tex]\( -3 \)[/tex]. Therefore, there is a horizontal asymptote at [tex]\( y = -3 \)[/tex].
2. Intercepts:
- X-Intercept: Set [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ \frac{2}{x+1} - 3 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ \frac{2}{x+1} = 3 \][/tex]
[tex]\[ 2 = 3(x+1) \][/tex]
[tex]\[ 2 = 3x + 3 \][/tex]
[tex]\[ 3x = -1 \][/tex]
[tex]\[ x = -\frac{1}{3} \][/tex]
So, the x-intercept is at [tex]\( \left( -\frac{1}{3}, 0 \right) \)[/tex].
- Y-Intercept: Set [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{2}{0+1} - 3 = 2 - 3 = -1 \][/tex]
So, the y-intercept is at [tex]\( (0, -1) \)[/tex].
3. Behavior Near the Asymptotes:
- As [tex]\( x \)[/tex] approaches [tex]\( -1 \)[/tex] from the left ([tex]\( x \rightarrow -1^- \)[/tex]), [tex]\( \frac{2}{x+1} \)[/tex] becomes very large negatively, making [tex]\( f(x) \)[/tex] approach [tex]\( -\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( -1 \)[/tex] from the right ([tex]\( x \rightarrow -1^+ \)[/tex]), [tex]\( \frac{2}{x+1} \)[/tex] becomes very large positively, making [tex]\( f(x) \)[/tex] approach [tex]\( \infty \)[/tex].
4. Plotting Points:
- To further understand the shape, we can evaluate the function at a few more points and plot them:
[tex]\[ f(-2) = \frac{2}{-2+1} - 3 = \frac{2}{-1} - 3 = -2 - 3 = -5 \][/tex]
[tex]\[ f(1) = \frac{2}{1+1} - 3 = \frac{2}{2} - 3 = 1 - 3 = -2 \][/tex]
5. Sketch the Graph:
- Draw vertical asymptote at [tex]\( x = -1 \)[/tex].
- Draw horizontal asymptote at [tex]\( y = -3 \)[/tex].
- Plot the intercepts: [tex]\( \left( -\frac{1}{3}, 0 \right) \)[/tex] and [tex]\( (0, -1) \)[/tex].
- Plot additional points like [tex]\( (-2, -5) \)[/tex] and [tex]\( (1, -2) \)[/tex].
By connecting these points and behavior patterns, the graph of [tex]\( f(x) = \frac{2}{x+1} - 3 \)[/tex] will look like this:
[tex]\[ \begin{tikzpicture} \begin{axis}[ axis lines = middle, xlabel = {$x$}, ylabel = {$f(x)$}, xmin=-3,xmax=3, ymin=-8,ymax=2, xtick={-3,-2,-1,0,1,2,3}, ytick={-8,-6,-4,-3,-2,0,1,2}, ] % Vertical asymptote \addplot[dashed, samples=2, domain=-3:3] {x==-1 ? -1e16 : 1/0}; % Horizontal asymptote \addplot[dashed, samples=2, domain=-3:3] {-3}; % The actual graph \addplot[domain=-3:-1.1, samples=100, thick] {2/(x+1) - 3}; \addplot[domain=-0.9:3, samples=100, thick] {2/(x+1) - 3}; % Adding key points \addplot[only marks, mark=*] coordinates{(-1/3, 0) (0, -1) (-2, -5) (1, -2)}; \end{axis} \end{tikzpicture} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.