Expand your horizons with the diverse and informative answers found on IDNLearn.com. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.
Sagot :
Sure, let's go through the process to find the domain and range of the inverse function [tex]\( f^{-1} \)[/tex] for the given function [tex]\( f(x) = \frac{1}{3x + 2} \)[/tex].
### Step 1: Find [tex]\( f^{-1}(x) \)[/tex]
To find the inverse function [tex]\( f^{-1}(x) \)[/tex], we start by setting [tex]\( f(x) \)[/tex] equal to [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{3x + 2} \][/tex]
Next, we solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y(3x + 2) = 1 \][/tex]
[tex]\[ 3xy + 2y = 1 \][/tex]
[tex]\[ 3xy = 1 - 2y \][/tex]
[tex]\[ x = \frac{1 - 2y}{3y} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(y) = \frac{1 - 2y}{3y} \][/tex]
### Step 2: Determine the Domain of [tex]\( f^{-1}(x) \)[/tex]
The domain of [tex]\( f \)[/tex] should reflect the range of [tex]\( f^{-1} \)[/tex]. For [tex]\( f(x) = \frac{1}{3x + 2} \)[/tex], the function is defined for all [tex]\( x \)[/tex] except where the denominator is zero. We solve for when the denominator is zero:
[tex]\[ 3x + 2 = 0 \][/tex]
[tex]\[ x = -\frac{2}{3} \][/tex]
Hence, [tex]\( f(x) \)[/tex] is defined for all [tex]\( x \in \mathbb{R} \)[/tex] except [tex]\( x = -\frac{2}{3} \)[/tex]. The range of [tex]\( f(x) \)[/tex] is therefore all real numbers except [tex]\( 0 \)[/tex] because as [tex]\( x \)[/tex] approaches [tex]\(-\frac{2}{3}\)[/tex], the function approaches infinity. Therefore, the range of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \setminus \{0\} \)[/tex].
Since the range of [tex]\( f(x) \)[/tex] becomes the domain of [tex]\( f^{-1}(x) \)[/tex], the domain of [tex]\( f^{-1} \)[/tex] is [tex]\( \mathbb{R} \setminus \{0\} \)[/tex].
### Step 3: Determine the Range of [tex]\( f^{-1}(x) \)[/tex]
The range of [tex]\( f \)[/tex] becomes the domain of [tex]\( f^{-1} \)[/tex]. Therefore, the domain of [tex]\( f \)[/tex] (all real numbers except when [tex]\( 3x + 2 = 0 \)[/tex]) will be the range of [tex]\( f^{-1} \)[/tex]. That is:
[tex]\[ 3x + 2 \neq 0 \][/tex]
So, the domain of [tex]\( f \)[/tex], and hence the range of [tex]\( f^{-1} \)[/tex], is all real numbers ([tex]\( \mathbb{R} \)[/tex]).
### Conclusion
From the steps above:
- The inverse function is [tex]\( f^{-1}(x) = \frac{1 - 2x}{3x} \)[/tex].
- The domain of [tex]\( f^{-1}(x) \)[/tex] is [tex]\( \mathbb{R} \setminus \{0\} \)[/tex].
- The range of [tex]\( f^{-1}(x) \)[/tex] is all real numbers ([tex]\( \mathbb{R} \)[/tex]).
Therefore:
[tex]\[ f^{-1}(y) = \frac{1 - 2y}{3y} \][/tex]
Domain of [tex]\( f^{-1} \)[/tex]: [tex]\(\mathbb{R}\)[/tex]
Range of [tex]\( f^{-1} \)[/tex]: [tex]\( \mathbb{R} \setminus \{0\} \)[/tex]
### Step 1: Find [tex]\( f^{-1}(x) \)[/tex]
To find the inverse function [tex]\( f^{-1}(x) \)[/tex], we start by setting [tex]\( f(x) \)[/tex] equal to [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{3x + 2} \][/tex]
Next, we solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y(3x + 2) = 1 \][/tex]
[tex]\[ 3xy + 2y = 1 \][/tex]
[tex]\[ 3xy = 1 - 2y \][/tex]
[tex]\[ x = \frac{1 - 2y}{3y} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(y) = \frac{1 - 2y}{3y} \][/tex]
### Step 2: Determine the Domain of [tex]\( f^{-1}(x) \)[/tex]
The domain of [tex]\( f \)[/tex] should reflect the range of [tex]\( f^{-1} \)[/tex]. For [tex]\( f(x) = \frac{1}{3x + 2} \)[/tex], the function is defined for all [tex]\( x \)[/tex] except where the denominator is zero. We solve for when the denominator is zero:
[tex]\[ 3x + 2 = 0 \][/tex]
[tex]\[ x = -\frac{2}{3} \][/tex]
Hence, [tex]\( f(x) \)[/tex] is defined for all [tex]\( x \in \mathbb{R} \)[/tex] except [tex]\( x = -\frac{2}{3} \)[/tex]. The range of [tex]\( f(x) \)[/tex] is therefore all real numbers except [tex]\( 0 \)[/tex] because as [tex]\( x \)[/tex] approaches [tex]\(-\frac{2}{3}\)[/tex], the function approaches infinity. Therefore, the range of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \setminus \{0\} \)[/tex].
Since the range of [tex]\( f(x) \)[/tex] becomes the domain of [tex]\( f^{-1}(x) \)[/tex], the domain of [tex]\( f^{-1} \)[/tex] is [tex]\( \mathbb{R} \setminus \{0\} \)[/tex].
### Step 3: Determine the Range of [tex]\( f^{-1}(x) \)[/tex]
The range of [tex]\( f \)[/tex] becomes the domain of [tex]\( f^{-1} \)[/tex]. Therefore, the domain of [tex]\( f \)[/tex] (all real numbers except when [tex]\( 3x + 2 = 0 \)[/tex]) will be the range of [tex]\( f^{-1} \)[/tex]. That is:
[tex]\[ 3x + 2 \neq 0 \][/tex]
So, the domain of [tex]\( f \)[/tex], and hence the range of [tex]\( f^{-1} \)[/tex], is all real numbers ([tex]\( \mathbb{R} \)[/tex]).
### Conclusion
From the steps above:
- The inverse function is [tex]\( f^{-1}(x) = \frac{1 - 2x}{3x} \)[/tex].
- The domain of [tex]\( f^{-1}(x) \)[/tex] is [tex]\( \mathbb{R} \setminus \{0\} \)[/tex].
- The range of [tex]\( f^{-1}(x) \)[/tex] is all real numbers ([tex]\( \mathbb{R} \)[/tex]).
Therefore:
[tex]\[ f^{-1}(y) = \frac{1 - 2y}{3y} \][/tex]
Domain of [tex]\( f^{-1} \)[/tex]: [tex]\(\mathbb{R}\)[/tex]
Range of [tex]\( f^{-1} \)[/tex]: [tex]\( \mathbb{R} \setminus \{0\} \)[/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.