From everyday questions to specialized queries, IDNLearn.com has the answers. Join our Q&A platform to access reliable and detailed answers from experts in various fields.
Sagot :
Let's examine the given equation and verify whether it holds true:
[tex]\[ \frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \sec A + \csc A. \][/tex]
### Step 1: Simplify the left-hand side (LHS) of the equation.
Let [tex]\( x = \cos A + \sin A \)[/tex]. Then we can rewrite the LHS as:
[tex]\[ \frac{1}{x - 1} + \frac{1}{x + 1}. \][/tex]
### Step 2: Combine the fractions on the LHS.
We combine the fractions by obtaining a common denominator:
[tex]\[ \frac{1}{x - 1} + \frac{1}{x + 1} = \frac{(x + 1) + (x - 1)}{(x - 1)(x + 1)} = \frac{x + 1 + x - 1}{(x - 1)(x + 1)} = \frac{2x}{x^2 - 1}. \][/tex]
Recall that [tex]\( x = \cos A + \sin A \)[/tex], so substituting [tex]\( x \)[/tex] back into the fraction:
[tex]\[ \frac{2(\cos A + \sin A)}{(\cos A + \sin A)^2 - 1}. \][/tex]
### Step 3: Simplify the expression.
[tex]\[ (\cos A + \sin A)^2 = \cos^2 A + \sin^2 A + 2 \cos A \sin A = 1 + 2 \cos A \sin A. \][/tex]
Then the denominator becomes:
[tex]\[ (\cos A + \sin A)^2 - 1 = (1 + 2 \cos A \sin A) - 1 = 2 \cos A \sin A. \][/tex]
Therefore, the LHS simplifies to:
[tex]\[ \frac{2(\cos A + \sin A)}{2 \cos A \sin A} = \frac{\cos A + \sin A}{\cos A \sin A}. \][/tex]
We can split this fraction into two separate terms:
[tex]\[ \frac{\cos A + \sin A}{\cos A \sin A} = \frac{\cos A}{\cos A \sin A} + \frac{\sin A}{\cos A \sin A} = \frac{1}{\sin A} + \frac{1}{\cos A} = \csc A + \sec A. \][/tex]
### Step 4: Compare the simplified LHS with the right-hand side (RHS).
So, we have:
[tex]\[ \frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \csc A + \sec A. \][/tex]
Thus, we see that the LHS simplifies directly to the RHS:
[tex]\[ \sec A + \csc A = \sec A + \csc A. \][/tex]
Hence, we have shown that the given equation holds true.
[tex]\[ \boxed{\frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \sec A + \csc A}. \][/tex]
[tex]\[ \frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \sec A + \csc A. \][/tex]
### Step 1: Simplify the left-hand side (LHS) of the equation.
Let [tex]\( x = \cos A + \sin A \)[/tex]. Then we can rewrite the LHS as:
[tex]\[ \frac{1}{x - 1} + \frac{1}{x + 1}. \][/tex]
### Step 2: Combine the fractions on the LHS.
We combine the fractions by obtaining a common denominator:
[tex]\[ \frac{1}{x - 1} + \frac{1}{x + 1} = \frac{(x + 1) + (x - 1)}{(x - 1)(x + 1)} = \frac{x + 1 + x - 1}{(x - 1)(x + 1)} = \frac{2x}{x^2 - 1}. \][/tex]
Recall that [tex]\( x = \cos A + \sin A \)[/tex], so substituting [tex]\( x \)[/tex] back into the fraction:
[tex]\[ \frac{2(\cos A + \sin A)}{(\cos A + \sin A)^2 - 1}. \][/tex]
### Step 3: Simplify the expression.
[tex]\[ (\cos A + \sin A)^2 = \cos^2 A + \sin^2 A + 2 \cos A \sin A = 1 + 2 \cos A \sin A. \][/tex]
Then the denominator becomes:
[tex]\[ (\cos A + \sin A)^2 - 1 = (1 + 2 \cos A \sin A) - 1 = 2 \cos A \sin A. \][/tex]
Therefore, the LHS simplifies to:
[tex]\[ \frac{2(\cos A + \sin A)}{2 \cos A \sin A} = \frac{\cos A + \sin A}{\cos A \sin A}. \][/tex]
We can split this fraction into two separate terms:
[tex]\[ \frac{\cos A + \sin A}{\cos A \sin A} = \frac{\cos A}{\cos A \sin A} + \frac{\sin A}{\cos A \sin A} = \frac{1}{\sin A} + \frac{1}{\cos A} = \csc A + \sec A. \][/tex]
### Step 4: Compare the simplified LHS with the right-hand side (RHS).
So, we have:
[tex]\[ \frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \csc A + \sec A. \][/tex]
Thus, we see that the LHS simplifies directly to the RHS:
[tex]\[ \sec A + \csc A = \sec A + \csc A. \][/tex]
Hence, we have shown that the given equation holds true.
[tex]\[ \boxed{\frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \sec A + \csc A}. \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com is committed to providing accurate answers. Thanks for stopping by, and see you next time for more solutions.