Explore IDNLearn.com's extensive Q&A database and find the answers you need. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.
Sagot :
Let's examine the given equation and verify whether it holds true:
[tex]\[ \frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \sec A + \csc A. \][/tex]
### Step 1: Simplify the left-hand side (LHS) of the equation.
Let [tex]\( x = \cos A + \sin A \)[/tex]. Then we can rewrite the LHS as:
[tex]\[ \frac{1}{x - 1} + \frac{1}{x + 1}. \][/tex]
### Step 2: Combine the fractions on the LHS.
We combine the fractions by obtaining a common denominator:
[tex]\[ \frac{1}{x - 1} + \frac{1}{x + 1} = \frac{(x + 1) + (x - 1)}{(x - 1)(x + 1)} = \frac{x + 1 + x - 1}{(x - 1)(x + 1)} = \frac{2x}{x^2 - 1}. \][/tex]
Recall that [tex]\( x = \cos A + \sin A \)[/tex], so substituting [tex]\( x \)[/tex] back into the fraction:
[tex]\[ \frac{2(\cos A + \sin A)}{(\cos A + \sin A)^2 - 1}. \][/tex]
### Step 3: Simplify the expression.
[tex]\[ (\cos A + \sin A)^2 = \cos^2 A + \sin^2 A + 2 \cos A \sin A = 1 + 2 \cos A \sin A. \][/tex]
Then the denominator becomes:
[tex]\[ (\cos A + \sin A)^2 - 1 = (1 + 2 \cos A \sin A) - 1 = 2 \cos A \sin A. \][/tex]
Therefore, the LHS simplifies to:
[tex]\[ \frac{2(\cos A + \sin A)}{2 \cos A \sin A} = \frac{\cos A + \sin A}{\cos A \sin A}. \][/tex]
We can split this fraction into two separate terms:
[tex]\[ \frac{\cos A + \sin A}{\cos A \sin A} = \frac{\cos A}{\cos A \sin A} + \frac{\sin A}{\cos A \sin A} = \frac{1}{\sin A} + \frac{1}{\cos A} = \csc A + \sec A. \][/tex]
### Step 4: Compare the simplified LHS with the right-hand side (RHS).
So, we have:
[tex]\[ \frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \csc A + \sec A. \][/tex]
Thus, we see that the LHS simplifies directly to the RHS:
[tex]\[ \sec A + \csc A = \sec A + \csc A. \][/tex]
Hence, we have shown that the given equation holds true.
[tex]\[ \boxed{\frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \sec A + \csc A}. \][/tex]
[tex]\[ \frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \sec A + \csc A. \][/tex]
### Step 1: Simplify the left-hand side (LHS) of the equation.
Let [tex]\( x = \cos A + \sin A \)[/tex]. Then we can rewrite the LHS as:
[tex]\[ \frac{1}{x - 1} + \frac{1}{x + 1}. \][/tex]
### Step 2: Combine the fractions on the LHS.
We combine the fractions by obtaining a common denominator:
[tex]\[ \frac{1}{x - 1} + \frac{1}{x + 1} = \frac{(x + 1) + (x - 1)}{(x - 1)(x + 1)} = \frac{x + 1 + x - 1}{(x - 1)(x + 1)} = \frac{2x}{x^2 - 1}. \][/tex]
Recall that [tex]\( x = \cos A + \sin A \)[/tex], so substituting [tex]\( x \)[/tex] back into the fraction:
[tex]\[ \frac{2(\cos A + \sin A)}{(\cos A + \sin A)^2 - 1}. \][/tex]
### Step 3: Simplify the expression.
[tex]\[ (\cos A + \sin A)^2 = \cos^2 A + \sin^2 A + 2 \cos A \sin A = 1 + 2 \cos A \sin A. \][/tex]
Then the denominator becomes:
[tex]\[ (\cos A + \sin A)^2 - 1 = (1 + 2 \cos A \sin A) - 1 = 2 \cos A \sin A. \][/tex]
Therefore, the LHS simplifies to:
[tex]\[ \frac{2(\cos A + \sin A)}{2 \cos A \sin A} = \frac{\cos A + \sin A}{\cos A \sin A}. \][/tex]
We can split this fraction into two separate terms:
[tex]\[ \frac{\cos A + \sin A}{\cos A \sin A} = \frac{\cos A}{\cos A \sin A} + \frac{\sin A}{\cos A \sin A} = \frac{1}{\sin A} + \frac{1}{\cos A} = \csc A + \sec A. \][/tex]
### Step 4: Compare the simplified LHS with the right-hand side (RHS).
So, we have:
[tex]\[ \frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \csc A + \sec A. \][/tex]
Thus, we see that the LHS simplifies directly to the RHS:
[tex]\[ \sec A + \csc A = \sec A + \csc A. \][/tex]
Hence, we have shown that the given equation holds true.
[tex]\[ \boxed{\frac{1}{\cos A + \sin A - 1} + \frac{1}{\cos A + \sin A + 1} = \sec A + \csc A}. \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.