Whether you're a student or a professional, IDNLearn.com has answers for everyone. Get the information you need from our community of experts, who provide detailed and trustworthy answers.
Sagot :
Sure! Let's walk through the process step by step for the given rational function:
[tex]\[ f(x) = \frac{5}{x-4} - 4 \][/tex]
### Step 1: Determine the Vertical Asymptote
Vertical asymptotes occur where the denominator of the rational function is zero, which causes the function to be undefined.
For [tex]\(\frac{5}{x-4}\)[/tex], the denominator is [tex]\(x-4\)[/tex].
Set the denominator equal to zero:
[tex]\[ x - 4 = 0 \][/tex]
[tex]\[ x = 4 \][/tex]
Thus, there is a vertical asymptote at [tex]\( x = 4 \)[/tex].
### Step 2: Determine the Horizontal Asymptote
Horizontal asymptotes are found by analyzing the behavior of the function as [tex]\( x \)[/tex] approaches infinity.
Consider [tex]\( \frac{5}{x-4} \)[/tex]. As [tex]\( x \to \infty \)[/tex] or [tex]\( x \to -\infty \)[/tex], [tex]\(\frac{5}{x-4} \)[/tex] approaches 0.
The horizontal asymptote, therefore, is determined by the constant term left after analyzing what happens to [tex]\(\frac{5}{x-4}\)[/tex] at infinity:
[tex]\[ \frac{5}{x-4} \to 0 \quad \text{as} \quad x \to \pm\infty \][/tex]
Thus:
[tex]\[ f(x) \to -4 \quad \text{as} \quad x \to \pm\infty \][/tex]
So, there is a horizontal asymptote at [tex]\( y = -4 \)[/tex].
### Step 3: Determine the [tex]\(x\)[/tex]-Intercept
The [tex]\(x\)[/tex]-intercept occurs where the function equals zero. Set [tex]\( f(x) \)[/tex] to 0 and solve for [tex]\( x \)[/tex].
[tex]\[ \frac{5}{x-4} - 4 = 0 \][/tex]
Solving this:
[tex]\[ \frac{5}{x-4} = 4 \][/tex]
[tex]\[ 5 = 4(x-4) \][/tex]
[tex]\[ 5 = 4x - 16 \][/tex]
[tex]\[ 4x = 21 \][/tex]
[tex]\[ x = \frac{21}{4} = 5.25 \][/tex]
Thus, the [tex]\( x \)[/tex]-intercept is at [tex]\( x = \frac{21}{4} \)[/tex].
### Step 4: Determine the [tex]\(y\)[/tex]-Intercept
The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex].
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = \frac{5}{0-4} - 4 \][/tex]
[tex]\[ f(0) = \frac{5}{-4} - 4 \][/tex]
[tex]\[ f(0) = -\frac{5}{4} - 4 \][/tex]
[tex]\[ f(0) = -\frac{5}{4} - \frac{16}{4} \][/tex]
[tex]\[ f(0) = -\frac{21}{4} \][/tex]
Thus, the [tex]\( y \)[/tex]-intercept is at [tex]\( y = -\frac{21}{4} \)[/tex].
### Plotting the Function
We can now plot the intercepts and asymptotes on the graph of the function [tex]\( f(x) = \frac{5}{x-4} - 4 \)[/tex].
1. Vertical Asymptote: Draw a dashed vertical line at [tex]\( x = 4 \)[/tex].
2. Horizontal Asymptote: Draw a dashed horizontal line at [tex]\( y = -4 \)[/tex].
3. [tex]\( x \)[/tex]-Intercept: Plot the point [tex]\( \left( \frac{21}{4}, 0 \right) \)[/tex] which is approximately [tex]\( (5.25, 0) \)[/tex].
4. [tex]\( y \)[/tex]-Intercept: Plot the point [tex]\( \left( 0, -\frac{21}{4} \right) \)[/tex] which is approximately [tex]\( (0, -5.25) \)[/tex].
Here’s a basic sketch representing the function along with its intercepts and asymptotes:
[tex]\[ \begin{array}{c} \begin{tikzpicture}[scale=1] % Axes \draw[black!50] (-2,-6) grid (8,2); \draw[thick, ->] (-2,0) -- (8,0) node[right] {\(x\)}; \draw[thick, ->] (0,-6) -- (0,2) node[above] {\(y\)}; % Asymptotes \draw[red, dashed] (4,-6) -- (4,2); \node at (4,-6.5) [red] {\(x=4\)}; \draw[green, dashed] (-2,-4) -- (8,-4); \node at (-2.5,-4.0) [green] {\(y=-4\)}; % Intercepts \draw[blue, fill=blue] (5.25,0) circle [radius=0.05]; \node at (5.35,0) [below] {\( (\frac{21}{4}, 0) \)}; \draw[magenta, fill=magenta] (0,-5.25) circle [radius=0.05]; \node at (0,-5.6) [left] { \( (0, -\frac{21}{4}) \) }; % Function plot \draw[cyan, thick] plot [domain=-2:3.8, samples=100] (\x,{5/(\x-4)-4}); \draw[cyan, thick] plot [domain=4.2:8, samples=100] (\x,{5/(\x-4)-4}); \node at (5,-3) [cyan] {\(f(x) = \frac{5}{x-4} - 4\)}; \end{tikzpicture} \end{array} \][/tex]
And there you have it! The graph of the function, its asymptotes, and intercepts plotted.
[tex]\[ f(x) = \frac{5}{x-4} - 4 \][/tex]
### Step 1: Determine the Vertical Asymptote
Vertical asymptotes occur where the denominator of the rational function is zero, which causes the function to be undefined.
For [tex]\(\frac{5}{x-4}\)[/tex], the denominator is [tex]\(x-4\)[/tex].
Set the denominator equal to zero:
[tex]\[ x - 4 = 0 \][/tex]
[tex]\[ x = 4 \][/tex]
Thus, there is a vertical asymptote at [tex]\( x = 4 \)[/tex].
### Step 2: Determine the Horizontal Asymptote
Horizontal asymptotes are found by analyzing the behavior of the function as [tex]\( x \)[/tex] approaches infinity.
Consider [tex]\( \frac{5}{x-4} \)[/tex]. As [tex]\( x \to \infty \)[/tex] or [tex]\( x \to -\infty \)[/tex], [tex]\(\frac{5}{x-4} \)[/tex] approaches 0.
The horizontal asymptote, therefore, is determined by the constant term left after analyzing what happens to [tex]\(\frac{5}{x-4}\)[/tex] at infinity:
[tex]\[ \frac{5}{x-4} \to 0 \quad \text{as} \quad x \to \pm\infty \][/tex]
Thus:
[tex]\[ f(x) \to -4 \quad \text{as} \quad x \to \pm\infty \][/tex]
So, there is a horizontal asymptote at [tex]\( y = -4 \)[/tex].
### Step 3: Determine the [tex]\(x\)[/tex]-Intercept
The [tex]\(x\)[/tex]-intercept occurs where the function equals zero. Set [tex]\( f(x) \)[/tex] to 0 and solve for [tex]\( x \)[/tex].
[tex]\[ \frac{5}{x-4} - 4 = 0 \][/tex]
Solving this:
[tex]\[ \frac{5}{x-4} = 4 \][/tex]
[tex]\[ 5 = 4(x-4) \][/tex]
[tex]\[ 5 = 4x - 16 \][/tex]
[tex]\[ 4x = 21 \][/tex]
[tex]\[ x = \frac{21}{4} = 5.25 \][/tex]
Thus, the [tex]\( x \)[/tex]-intercept is at [tex]\( x = \frac{21}{4} \)[/tex].
### Step 4: Determine the [tex]\(y\)[/tex]-Intercept
The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex].
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = \frac{5}{0-4} - 4 \][/tex]
[tex]\[ f(0) = \frac{5}{-4} - 4 \][/tex]
[tex]\[ f(0) = -\frac{5}{4} - 4 \][/tex]
[tex]\[ f(0) = -\frac{5}{4} - \frac{16}{4} \][/tex]
[tex]\[ f(0) = -\frac{21}{4} \][/tex]
Thus, the [tex]\( y \)[/tex]-intercept is at [tex]\( y = -\frac{21}{4} \)[/tex].
### Plotting the Function
We can now plot the intercepts and asymptotes on the graph of the function [tex]\( f(x) = \frac{5}{x-4} - 4 \)[/tex].
1. Vertical Asymptote: Draw a dashed vertical line at [tex]\( x = 4 \)[/tex].
2. Horizontal Asymptote: Draw a dashed horizontal line at [tex]\( y = -4 \)[/tex].
3. [tex]\( x \)[/tex]-Intercept: Plot the point [tex]\( \left( \frac{21}{4}, 0 \right) \)[/tex] which is approximately [tex]\( (5.25, 0) \)[/tex].
4. [tex]\( y \)[/tex]-Intercept: Plot the point [tex]\( \left( 0, -\frac{21}{4} \right) \)[/tex] which is approximately [tex]\( (0, -5.25) \)[/tex].
Here’s a basic sketch representing the function along with its intercepts and asymptotes:
[tex]\[ \begin{array}{c} \begin{tikzpicture}[scale=1] % Axes \draw[black!50] (-2,-6) grid (8,2); \draw[thick, ->] (-2,0) -- (8,0) node[right] {\(x\)}; \draw[thick, ->] (0,-6) -- (0,2) node[above] {\(y\)}; % Asymptotes \draw[red, dashed] (4,-6) -- (4,2); \node at (4,-6.5) [red] {\(x=4\)}; \draw[green, dashed] (-2,-4) -- (8,-4); \node at (-2.5,-4.0) [green] {\(y=-4\)}; % Intercepts \draw[blue, fill=blue] (5.25,0) circle [radius=0.05]; \node at (5.35,0) [below] {\( (\frac{21}{4}, 0) \)}; \draw[magenta, fill=magenta] (0,-5.25) circle [radius=0.05]; \node at (0,-5.6) [left] { \( (0, -\frac{21}{4}) \) }; % Function plot \draw[cyan, thick] plot [domain=-2:3.8, samples=100] (\x,{5/(\x-4)-4}); \draw[cyan, thick] plot [domain=4.2:8, samples=100] (\x,{5/(\x-4)-4}); \node at (5,-3) [cyan] {\(f(x) = \frac{5}{x-4} - 4\)}; \end{tikzpicture} \end{array} \][/tex]
And there you have it! The graph of the function, its asymptotes, and intercepts plotted.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.