Get expert insights and community support for your questions on IDNLearn.com. Our platform offers detailed and accurate responses from experts, helping you navigate any topic with confidence.

Let [tex]$u = \overrightarrow{PQ}$[/tex] be the directed line segment from [tex]$P(0,0)$[/tex] to [tex][tex]$Q(9,12)$[/tex][/tex], and let [tex]$c$[/tex] be a scalar such that [tex]$c \ \textless \ 0$[/tex]. Which statement best describes [tex][tex]$cu$[/tex][/tex]?

A. The terminal point of [tex]cu[/tex] lies in Quadrant III.
B. The terminal point of [tex]cu[/tex] lies in Quadrant IV.
C. The terminal point of [tex]cu[/tex] lies in Quadrant I.
D. The terminal point of [tex]cu[/tex] lies in Quadrant II.


Sagot :

Let's analyze the given problem step-by-step:

1. Define the Vector [tex]\( \mathbf{u} \)[/tex]:
The vector [tex]\( \mathbf{u} \)[/tex] is given as the directed line segment from [tex]\( P(0,0) \)[/tex] to [tex]\( Q(9,12) \)[/tex]. This means the vector [tex]\( \mathbf{u} \)[/tex] has components:
[tex]\[ \mathbf{u} = \langle 9, 12 \rangle \][/tex]

2. Scalar Multiplication:
Since [tex]\( c \)[/tex] is a scalar such that [tex]\( c < 0 \)[/tex], multiplying [tex]\( \mathbf{u} \)[/tex] by [tex]\( c \)[/tex] will reverse the direction of the vector.
If we denote the scalar multiplication as [tex]\( c \mathbf{u} = \langle c \cdot 9, c \cdot 12 \rangle \)[/tex].

3. Assume a Specific [tex]\( c \)[/tex]:
To simplify our understanding, let's assume [tex]\( c = -1 \)[/tex], which clearly satisfies [tex]\( c < 0 \)[/tex].

4. Calculate [tex]\( c \mathbf{u} \)[/tex]:
By multiplying the vector components by [tex]\( c \)[/tex]:
[tex]\[ c \mathbf{u} = \langle -1 \cdot 9, -1 \cdot 12 \rangle = \langle -9, -12 \rangle \][/tex]

5. Analyze the Resulting Vector:
The vector [tex]\( \langle -9, -12 \rangle \)[/tex] has both components negative.

6. Determine the Quadrant:
A point with negative [tex]\( x \)[/tex]-coordinate and negative [tex]\( y \)[/tex]-coordinate lies in Quadrant III of the Cartesian coordinate system.

Thus, the terminal point of [tex]\( c \mathbf{u} \)[/tex] lies in Quadrant III.

Conclusion:
Given the vector [tex]\( \mathbf{u} = \overrightarrow{PQ} \)[/tex] from [tex]\( P(0,0) \)[/tex] to [tex]\( Q(9,12) \)[/tex] and a scalar [tex]\( c < 0 \)[/tex], the best statement describing [tex]\( c \mathbf{u} \)[/tex] is:
[tex]\[ \boxed{\text{The terminal point of \( c \mathbf{u} \) lies in Quadrant III.}} \][/tex]