IDNLearn.com: Your go-to resource for finding expert answers. Our community provides timely and precise responses to help you understand and solve any issue you face.
Sagot :
To determine which function is most likely increasing exponentially, we need to analyze the growth rates of both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex].
First, let's calculate the growth rates for each function as [tex]\( x \)[/tex] increases:
### Calculating the Growth Rates for [tex]\( f(x) \)[/tex]:
1. For [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{f(2) - f(1)}{2 - 1} = \frac{5 - 2}{1} = 3.0 \][/tex]
2. For [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{f(3) - f(2)}{3 - 2} = \frac{10 - 5}{1} = 5.0 \][/tex]
3. For [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{f(4) - f(3)}{4 - 3} = \frac{17 - 10}{1} = 7.0 \][/tex]
4. For [tex]\( x = 4 \)[/tex] to [tex]\( x = 5 \)[/tex]:
[tex]\[ \frac{f(5) - f(4)}{5 - 4} = \frac{26 - 17}{1} = 9.0 \][/tex]
The growth rates for [tex]\( f(x) \)[/tex] are [tex]\( 3.0, 5.0, 7.0, 9.0 \)[/tex].
### Calculating the Growth Rates for [tex]\( g(x) \)[/tex]:
1. For [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{g(2) - g(1)}{2 - 1} = \frac{4 - 2}{1} = 2.0 \][/tex]
2. For [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{g(3) - g(2)}{3 - 2} = \frac{8 - 4}{1} = 4.0 \][/tex]
3. For [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{g(4) - g(3)}{4 - 3} = \frac{16 - 8}{1} = 8.0 \][/tex]
4. For [tex]\( x = 4 \)[/tex] to [tex]\( x = 5 \)[/tex]:
[tex]\[ \frac{g(5) - g(4)}{5 - 4} = \frac{32 - 16}{1} = 16.0 \][/tex]
The growth rates for [tex]\( g(x) \)[/tex] are [tex]\( 2.0, 4.0, 8.0, 16.0 \)[/tex].
### Analyzing the Growth Rates:
- The growth rates for [tex]\( f(x) \)[/tex] (3.0, 5.0, 7.0, 9.0) increase by a constant amount:
[tex]\[ 5.0 - 3.0 = 2.0 \][/tex]
[tex]\[ 7.0 - 5.0 = 2.0 \][/tex]
[tex]\[ 9.0 - 7.0 = 2.0 \][/tex]
This pattern indicates a quadratic function.
- The growth rates for [tex]\( g(x) \)[/tex] (2.0, 4.0, 8.0, 16.0) double each time:
[tex]\[ \frac{4.0}{2.0} = 2.0 \][/tex]
[tex]\[ \frac{8.0}{4.0} = 2.0 \][/tex]
[tex]\[ \frac{16.0}{8.0} = 2.0 \][/tex]
This pattern indicates an exponential function, as the growth rate multiplies by a constant factor.
### Conclusion:
The function [tex]\( g(x) \)[/tex] grows exponentially since its growth rate multiplies by a constant factor. Thus, the function that grows faster is [tex]\( g(x) \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{g(x), \text{ because it grows faster than } f(x).} \][/tex]
First, let's calculate the growth rates for each function as [tex]\( x \)[/tex] increases:
### Calculating the Growth Rates for [tex]\( f(x) \)[/tex]:
1. For [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{f(2) - f(1)}{2 - 1} = \frac{5 - 2}{1} = 3.0 \][/tex]
2. For [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{f(3) - f(2)}{3 - 2} = \frac{10 - 5}{1} = 5.0 \][/tex]
3. For [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{f(4) - f(3)}{4 - 3} = \frac{17 - 10}{1} = 7.0 \][/tex]
4. For [tex]\( x = 4 \)[/tex] to [tex]\( x = 5 \)[/tex]:
[tex]\[ \frac{f(5) - f(4)}{5 - 4} = \frac{26 - 17}{1} = 9.0 \][/tex]
The growth rates for [tex]\( f(x) \)[/tex] are [tex]\( 3.0, 5.0, 7.0, 9.0 \)[/tex].
### Calculating the Growth Rates for [tex]\( g(x) \)[/tex]:
1. For [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{g(2) - g(1)}{2 - 1} = \frac{4 - 2}{1} = 2.0 \][/tex]
2. For [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{g(3) - g(2)}{3 - 2} = \frac{8 - 4}{1} = 4.0 \][/tex]
3. For [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{g(4) - g(3)}{4 - 3} = \frac{16 - 8}{1} = 8.0 \][/tex]
4. For [tex]\( x = 4 \)[/tex] to [tex]\( x = 5 \)[/tex]:
[tex]\[ \frac{g(5) - g(4)}{5 - 4} = \frac{32 - 16}{1} = 16.0 \][/tex]
The growth rates for [tex]\( g(x) \)[/tex] are [tex]\( 2.0, 4.0, 8.0, 16.0 \)[/tex].
### Analyzing the Growth Rates:
- The growth rates for [tex]\( f(x) \)[/tex] (3.0, 5.0, 7.0, 9.0) increase by a constant amount:
[tex]\[ 5.0 - 3.0 = 2.0 \][/tex]
[tex]\[ 7.0 - 5.0 = 2.0 \][/tex]
[tex]\[ 9.0 - 7.0 = 2.0 \][/tex]
This pattern indicates a quadratic function.
- The growth rates for [tex]\( g(x) \)[/tex] (2.0, 4.0, 8.0, 16.0) double each time:
[tex]\[ \frac{4.0}{2.0} = 2.0 \][/tex]
[tex]\[ \frac{8.0}{4.0} = 2.0 \][/tex]
[tex]\[ \frac{16.0}{8.0} = 2.0 \][/tex]
This pattern indicates an exponential function, as the growth rate multiplies by a constant factor.
### Conclusion:
The function [tex]\( g(x) \)[/tex] grows exponentially since its growth rate multiplies by a constant factor. Thus, the function that grows faster is [tex]\( g(x) \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{g(x), \text{ because it grows faster than } f(x).} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.