IDNLearn.com offers a comprehensive solution for all your question and answer needs. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
Let's analyze the relationship [tex]\( S = aV^2 \ln E \)[/tex] where [tex]\(a\)[/tex] is a constant, and address each part of the question:
### Part (a)
To find [tex]\(\frac{1}{T}\)[/tex], we need to determine [tex]\(\left(\frac{\partial S}{\partial E}\right)_V\)[/tex].
Given [tex]\( S = aV^2 \ln E \)[/tex],
1. Differentiate [tex]\( S \)[/tex] with respect to [tex]\( E \)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = \frac{\partial}{\partial E} (aV^2 \ln E) \][/tex]
2. The derivative of [tex]\( \ln E \)[/tex] with respect to [tex]\( E \)[/tex] is [tex]\(\frac{1}{E}\)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = aV^2 \cdot \frac{1}{E} \][/tex]
Simplifying,
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = \frac{aV^2}{E} \][/tex]
Therefore,
[tex]\[ \frac{1}{T} = \left( \frac{\partial S}{\partial E} \right)_V = \frac{aV^2}{E} \][/tex]
And thus,
[tex]\[ T = \frac{E}{aV^2} \][/tex]
### Part (b)
To find [tex]\(\frac{p}{T}\)[/tex], we need to determine [tex]\(\left(\frac{\partial S}{\partial V}\right)_E\)[/tex].
Given [tex]\( S = aV^2 \ln E \)[/tex],
1. Differentiate [tex]\( S \)[/tex] with respect to [tex]\( V \)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial V} \right)_E = \frac{\partial}{\partial V} (aV^2 \ln E) \][/tex]
2. Using the product rule:
[tex]\[ \left( \frac{\partial S}{\partial V} \right)_E = 2aV \ln E \][/tex]
Therefore,
[tex]\[ \frac{p}{T} = \left( \frac{\partial S}{\partial V} \right)_E \Rightarrow \frac{p}{T} = 2aV \ln E \][/tex]
This means,
[tex]\[ p = T \cdot (2aV \ln E) \][/tex]
### Part (c)
To find [tex]\(\left( \frac{\partial E}{\partial V} \right)_T\)[/tex], we consider the condition where temperature [tex]\( T \)[/tex] is kept constant. Using [tex]\( T = \frac{E}{aV^2} \)[/tex]:
1. Express [tex]\( E \)[/tex] in terms of [tex]\(T\)[/tex], [tex]\(a\)[/tex], and [tex]\(V\)[/tex]:
[tex]\[ E = TaV^2 \][/tex]
2. Differentiate [tex]\( E \)[/tex] with respect to [tex]\( V \)[/tex] at constant [tex]\( T \)[/tex]:
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = \frac{\partial}{\partial V} (TaV^2) \][/tex]
3. Using the power rule:
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = T \cdot a \cdot 2V \][/tex]
Simplifying,
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = 2aTV \][/tex]
Therefore,
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = 2aV \ln E \][/tex]
In conclusion:
(a) [tex]\(\frac{1}{T} = \frac{aV^2}{E}\)[/tex],
(b) [tex]\(\frac{p}{T} = 2aV \ln E\)[/tex],
(c) [tex]\(\left( \frac{\partial E }{\partial V }\right)_T = 2aTV\)[/tex].
### Part (a)
To find [tex]\(\frac{1}{T}\)[/tex], we need to determine [tex]\(\left(\frac{\partial S}{\partial E}\right)_V\)[/tex].
Given [tex]\( S = aV^2 \ln E \)[/tex],
1. Differentiate [tex]\( S \)[/tex] with respect to [tex]\( E \)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = \frac{\partial}{\partial E} (aV^2 \ln E) \][/tex]
2. The derivative of [tex]\( \ln E \)[/tex] with respect to [tex]\( E \)[/tex] is [tex]\(\frac{1}{E}\)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = aV^2 \cdot \frac{1}{E} \][/tex]
Simplifying,
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = \frac{aV^2}{E} \][/tex]
Therefore,
[tex]\[ \frac{1}{T} = \left( \frac{\partial S}{\partial E} \right)_V = \frac{aV^2}{E} \][/tex]
And thus,
[tex]\[ T = \frac{E}{aV^2} \][/tex]
### Part (b)
To find [tex]\(\frac{p}{T}\)[/tex], we need to determine [tex]\(\left(\frac{\partial S}{\partial V}\right)_E\)[/tex].
Given [tex]\( S = aV^2 \ln E \)[/tex],
1. Differentiate [tex]\( S \)[/tex] with respect to [tex]\( V \)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial V} \right)_E = \frac{\partial}{\partial V} (aV^2 \ln E) \][/tex]
2. Using the product rule:
[tex]\[ \left( \frac{\partial S}{\partial V} \right)_E = 2aV \ln E \][/tex]
Therefore,
[tex]\[ \frac{p}{T} = \left( \frac{\partial S}{\partial V} \right)_E \Rightarrow \frac{p}{T} = 2aV \ln E \][/tex]
This means,
[tex]\[ p = T \cdot (2aV \ln E) \][/tex]
### Part (c)
To find [tex]\(\left( \frac{\partial E}{\partial V} \right)_T\)[/tex], we consider the condition where temperature [tex]\( T \)[/tex] is kept constant. Using [tex]\( T = \frac{E}{aV^2} \)[/tex]:
1. Express [tex]\( E \)[/tex] in terms of [tex]\(T\)[/tex], [tex]\(a\)[/tex], and [tex]\(V\)[/tex]:
[tex]\[ E = TaV^2 \][/tex]
2. Differentiate [tex]\( E \)[/tex] with respect to [tex]\( V \)[/tex] at constant [tex]\( T \)[/tex]:
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = \frac{\partial}{\partial V} (TaV^2) \][/tex]
3. Using the power rule:
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = T \cdot a \cdot 2V \][/tex]
Simplifying,
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = 2aTV \][/tex]
Therefore,
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = 2aV \ln E \][/tex]
In conclusion:
(a) [tex]\(\frac{1}{T} = \frac{aV^2}{E}\)[/tex],
(b) [tex]\(\frac{p}{T} = 2aV \ln E\)[/tex],
(c) [tex]\(\left( \frac{\partial E }{\partial V }\right)_T = 2aTV\)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.