IDNLearn.com provides a platform for sharing and gaining valuable knowledge. Our platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
Let's analyze the relationship [tex]\( S = aV^2 \ln E \)[/tex] where [tex]\(a\)[/tex] is a constant, and address each part of the question:
### Part (a)
To find [tex]\(\frac{1}{T}\)[/tex], we need to determine [tex]\(\left(\frac{\partial S}{\partial E}\right)_V\)[/tex].
Given [tex]\( S = aV^2 \ln E \)[/tex],
1. Differentiate [tex]\( S \)[/tex] with respect to [tex]\( E \)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = \frac{\partial}{\partial E} (aV^2 \ln E) \][/tex]
2. The derivative of [tex]\( \ln E \)[/tex] with respect to [tex]\( E \)[/tex] is [tex]\(\frac{1}{E}\)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = aV^2 \cdot \frac{1}{E} \][/tex]
Simplifying,
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = \frac{aV^2}{E} \][/tex]
Therefore,
[tex]\[ \frac{1}{T} = \left( \frac{\partial S}{\partial E} \right)_V = \frac{aV^2}{E} \][/tex]
And thus,
[tex]\[ T = \frac{E}{aV^2} \][/tex]
### Part (b)
To find [tex]\(\frac{p}{T}\)[/tex], we need to determine [tex]\(\left(\frac{\partial S}{\partial V}\right)_E\)[/tex].
Given [tex]\( S = aV^2 \ln E \)[/tex],
1. Differentiate [tex]\( S \)[/tex] with respect to [tex]\( V \)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial V} \right)_E = \frac{\partial}{\partial V} (aV^2 \ln E) \][/tex]
2. Using the product rule:
[tex]\[ \left( \frac{\partial S}{\partial V} \right)_E = 2aV \ln E \][/tex]
Therefore,
[tex]\[ \frac{p}{T} = \left( \frac{\partial S}{\partial V} \right)_E \Rightarrow \frac{p}{T} = 2aV \ln E \][/tex]
This means,
[tex]\[ p = T \cdot (2aV \ln E) \][/tex]
### Part (c)
To find [tex]\(\left( \frac{\partial E}{\partial V} \right)_T\)[/tex], we consider the condition where temperature [tex]\( T \)[/tex] is kept constant. Using [tex]\( T = \frac{E}{aV^2} \)[/tex]:
1. Express [tex]\( E \)[/tex] in terms of [tex]\(T\)[/tex], [tex]\(a\)[/tex], and [tex]\(V\)[/tex]:
[tex]\[ E = TaV^2 \][/tex]
2. Differentiate [tex]\( E \)[/tex] with respect to [tex]\( V \)[/tex] at constant [tex]\( T \)[/tex]:
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = \frac{\partial}{\partial V} (TaV^2) \][/tex]
3. Using the power rule:
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = T \cdot a \cdot 2V \][/tex]
Simplifying,
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = 2aTV \][/tex]
Therefore,
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = 2aV \ln E \][/tex]
In conclusion:
(a) [tex]\(\frac{1}{T} = \frac{aV^2}{E}\)[/tex],
(b) [tex]\(\frac{p}{T} = 2aV \ln E\)[/tex],
(c) [tex]\(\left( \frac{\partial E }{\partial V }\right)_T = 2aTV\)[/tex].
### Part (a)
To find [tex]\(\frac{1}{T}\)[/tex], we need to determine [tex]\(\left(\frac{\partial S}{\partial E}\right)_V\)[/tex].
Given [tex]\( S = aV^2 \ln E \)[/tex],
1. Differentiate [tex]\( S \)[/tex] with respect to [tex]\( E \)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = \frac{\partial}{\partial E} (aV^2 \ln E) \][/tex]
2. The derivative of [tex]\( \ln E \)[/tex] with respect to [tex]\( E \)[/tex] is [tex]\(\frac{1}{E}\)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = aV^2 \cdot \frac{1}{E} \][/tex]
Simplifying,
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = \frac{aV^2}{E} \][/tex]
Therefore,
[tex]\[ \frac{1}{T} = \left( \frac{\partial S}{\partial E} \right)_V = \frac{aV^2}{E} \][/tex]
And thus,
[tex]\[ T = \frac{E}{aV^2} \][/tex]
### Part (b)
To find [tex]\(\frac{p}{T}\)[/tex], we need to determine [tex]\(\left(\frac{\partial S}{\partial V}\right)_E\)[/tex].
Given [tex]\( S = aV^2 \ln E \)[/tex],
1. Differentiate [tex]\( S \)[/tex] with respect to [tex]\( V \)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial V} \right)_E = \frac{\partial}{\partial V} (aV^2 \ln E) \][/tex]
2. Using the product rule:
[tex]\[ \left( \frac{\partial S}{\partial V} \right)_E = 2aV \ln E \][/tex]
Therefore,
[tex]\[ \frac{p}{T} = \left( \frac{\partial S}{\partial V} \right)_E \Rightarrow \frac{p}{T} = 2aV \ln E \][/tex]
This means,
[tex]\[ p = T \cdot (2aV \ln E) \][/tex]
### Part (c)
To find [tex]\(\left( \frac{\partial E}{\partial V} \right)_T\)[/tex], we consider the condition where temperature [tex]\( T \)[/tex] is kept constant. Using [tex]\( T = \frac{E}{aV^2} \)[/tex]:
1. Express [tex]\( E \)[/tex] in terms of [tex]\(T\)[/tex], [tex]\(a\)[/tex], and [tex]\(V\)[/tex]:
[tex]\[ E = TaV^2 \][/tex]
2. Differentiate [tex]\( E \)[/tex] with respect to [tex]\( V \)[/tex] at constant [tex]\( T \)[/tex]:
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = \frac{\partial}{\partial V} (TaV^2) \][/tex]
3. Using the power rule:
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = T \cdot a \cdot 2V \][/tex]
Simplifying,
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = 2aTV \][/tex]
Therefore,
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = 2aV \ln E \][/tex]
In conclusion:
(a) [tex]\(\frac{1}{T} = \frac{aV^2}{E}\)[/tex],
(b) [tex]\(\frac{p}{T} = 2aV \ln E\)[/tex],
(c) [tex]\(\left( \frac{\partial E }{\partial V }\right)_T = 2aTV\)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.