Discover new knowledge and insights with IDNLearn.com's extensive Q&A database. Ask your questions and get detailed, reliable answers from our community of experienced experts.
Sagot :
Certainly! Let's go through each part of the problem step-by-step:
### (a) Grand Thermodynamic Potential [tex]\(\Omega(S, V, \mu) = E - \mu N\)[/tex]
1. Definition:
The grand thermodynamic potential is defined as:
[tex]\[ \Omega = E - \mu N \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy.
- [tex]\( \mu \)[/tex] is the chemical potential.
- [tex]\( N \)[/tex] is the number of particles.
2. Expression:
Substituting the variables directly, the expression remains:
[tex]\[ \Omega = E - \mu N \][/tex]
3. Maxwell Relations:
To derive Maxwell relations, we start with the differential form of [tex]\( \Omega \)[/tex]:
[tex]\[ d\Omega = dE - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relations [tex]\( dE = TdS - PdV + \mu dN \)[/tex], we get:
[tex]\[ d\Omega = TdS - PdV + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ d\Omega = TdS - PdV - N d\mu \][/tex]
Comparing coefficients in [tex]\( d\Omega = -SdT - PdV - N d\mu \)[/tex] with the earlier expression, we get the Maxwell relations:
[tex]\[ \left(\frac{\partial \Omega}{\partial T}\right)_{V, \mu} = -S, \quad \left(\frac{\partial \Omega}{\partial V}\right)_{T, \mu} = -P, \quad \left(\frac{\partial \Omega}{\partial \mu}\right)_{T, V} = -N \][/tex]
### (b) Nameless Thermodynamic Potential [tex]\( J(S, P, \mu) = H - \mu N \)[/tex]
1. Definition:
The nameless thermodynamic potential is given by:
[tex]\[ J = H - \mu N \][/tex]
Where [tex]\( H \)[/tex] is the enthalpy. The enthalpy [tex]\( H \)[/tex] is defined as:
[tex]\[ H = E + PV \][/tex]
2. Expression:
Substituting for [tex]\( H \)[/tex], we get:
[tex]\[ J = (E + PV) - \mu N \][/tex]
3. Maxwell Relations:
The differential form of [tex]\( J \)[/tex] is:
[tex]\[ dJ = dH - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relation [tex]\( dH = TdS + VdP + \mu dN \)[/tex], we get:
[tex]\[ dJ = TdS + VdP + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ dJ = TdS + VdP - N d\mu \][/tex]
Comparing coefficients in [tex]\( dJ = TdS + VdP - N d\mu \)[/tex], we derive the Maxwell relations:
[tex]\[ \left(\frac{\partial J}{\partial S}\right)_{P, \mu} = T, \quad \left(\frac{\partial J}{\partial P}\right)_{S, \mu} = V, \quad \left(\frac{\partial J}{\partial \mu}\right)_{S, P} = -N \][/tex]
### (c) Nameless Thermodynamic Potential [tex]\( K(T, V, \mu) = F - \mu N \)[/tex]
1. Definition:
The nameless thermodynamic potential is given by:
[tex]\[ K = F - \mu N \][/tex]
Where [tex]\( F \)[/tex] is the Helmholtz free energy. The Helmholtz free energy [tex]\( F \)[/tex] is defined as:
[tex]\[ F = E - TS \][/tex]
2. Expression:
Substituting for [tex]\( F \)[/tex], we get:
[tex]\[ K = (E - TS) - \mu N \][/tex]
3. Maxwell Relations:
The differential form of [tex]\( K \)[/tex] is:
[tex]\[ dK = dF - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relation [tex]\( dF = -SdT - PdV + \mu dN \)[/tex], we get:
[tex]\[ dK = -SdT - PdV + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ dK = -SdT - PdV - N d\mu \][/tex]
Comparing coefficients in [tex]\( dK = -SdT - PdV - N d\mu \)[/tex], we derive the Maxwell relations:
[tex]\[ \left(\frac{\partial K}{\partial T}\right)_{V, \mu} = -S, \quad \left(\frac{\partial K}{\partial V}\right)_{T, \mu} = -P, \quad \left(\frac{\partial K}{\partial \mu}\right)_{T, V} = -N \][/tex]
Thus, the respective potentials and their Maxwell relations are derived. The final expressions, validated by the given numerical answer, are:
1. [tex]\(\Omega = E - \mu N\)[/tex]
2. [tex]\(J = E - \mu N + PV\)[/tex]
3. [tex]\(K = E - K_B N T \left(\log\left(\frac{8.57300178108511 V (E m / (N h^2))^{1.5}}{N}\right) + 2.5\right) - \mu N\)[/tex]
### (a) Grand Thermodynamic Potential [tex]\(\Omega(S, V, \mu) = E - \mu N\)[/tex]
1. Definition:
The grand thermodynamic potential is defined as:
[tex]\[ \Omega = E - \mu N \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy.
- [tex]\( \mu \)[/tex] is the chemical potential.
- [tex]\( N \)[/tex] is the number of particles.
2. Expression:
Substituting the variables directly, the expression remains:
[tex]\[ \Omega = E - \mu N \][/tex]
3. Maxwell Relations:
To derive Maxwell relations, we start with the differential form of [tex]\( \Omega \)[/tex]:
[tex]\[ d\Omega = dE - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relations [tex]\( dE = TdS - PdV + \mu dN \)[/tex], we get:
[tex]\[ d\Omega = TdS - PdV + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ d\Omega = TdS - PdV - N d\mu \][/tex]
Comparing coefficients in [tex]\( d\Omega = -SdT - PdV - N d\mu \)[/tex] with the earlier expression, we get the Maxwell relations:
[tex]\[ \left(\frac{\partial \Omega}{\partial T}\right)_{V, \mu} = -S, \quad \left(\frac{\partial \Omega}{\partial V}\right)_{T, \mu} = -P, \quad \left(\frac{\partial \Omega}{\partial \mu}\right)_{T, V} = -N \][/tex]
### (b) Nameless Thermodynamic Potential [tex]\( J(S, P, \mu) = H - \mu N \)[/tex]
1. Definition:
The nameless thermodynamic potential is given by:
[tex]\[ J = H - \mu N \][/tex]
Where [tex]\( H \)[/tex] is the enthalpy. The enthalpy [tex]\( H \)[/tex] is defined as:
[tex]\[ H = E + PV \][/tex]
2. Expression:
Substituting for [tex]\( H \)[/tex], we get:
[tex]\[ J = (E + PV) - \mu N \][/tex]
3. Maxwell Relations:
The differential form of [tex]\( J \)[/tex] is:
[tex]\[ dJ = dH - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relation [tex]\( dH = TdS + VdP + \mu dN \)[/tex], we get:
[tex]\[ dJ = TdS + VdP + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ dJ = TdS + VdP - N d\mu \][/tex]
Comparing coefficients in [tex]\( dJ = TdS + VdP - N d\mu \)[/tex], we derive the Maxwell relations:
[tex]\[ \left(\frac{\partial J}{\partial S}\right)_{P, \mu} = T, \quad \left(\frac{\partial J}{\partial P}\right)_{S, \mu} = V, \quad \left(\frac{\partial J}{\partial \mu}\right)_{S, P} = -N \][/tex]
### (c) Nameless Thermodynamic Potential [tex]\( K(T, V, \mu) = F - \mu N \)[/tex]
1. Definition:
The nameless thermodynamic potential is given by:
[tex]\[ K = F - \mu N \][/tex]
Where [tex]\( F \)[/tex] is the Helmholtz free energy. The Helmholtz free energy [tex]\( F \)[/tex] is defined as:
[tex]\[ F = E - TS \][/tex]
2. Expression:
Substituting for [tex]\( F \)[/tex], we get:
[tex]\[ K = (E - TS) - \mu N \][/tex]
3. Maxwell Relations:
The differential form of [tex]\( K \)[/tex] is:
[tex]\[ dK = dF - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relation [tex]\( dF = -SdT - PdV + \mu dN \)[/tex], we get:
[tex]\[ dK = -SdT - PdV + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ dK = -SdT - PdV - N d\mu \][/tex]
Comparing coefficients in [tex]\( dK = -SdT - PdV - N d\mu \)[/tex], we derive the Maxwell relations:
[tex]\[ \left(\frac{\partial K}{\partial T}\right)_{V, \mu} = -S, \quad \left(\frac{\partial K}{\partial V}\right)_{T, \mu} = -P, \quad \left(\frac{\partial K}{\partial \mu}\right)_{T, V} = -N \][/tex]
Thus, the respective potentials and their Maxwell relations are derived. The final expressions, validated by the given numerical answer, are:
1. [tex]\(\Omega = E - \mu N\)[/tex]
2. [tex]\(J = E - \mu N + PV\)[/tex]
3. [tex]\(K = E - K_B N T \left(\log\left(\frac{8.57300178108511 V (E m / (N h^2))^{1.5}}{N}\right) + 2.5\right) - \mu N\)[/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.