Join IDNLearn.com and start exploring the answers to your most pressing questions. Get step-by-step guidance for all your technical questions from our dedicated community members.
Sagot :
Certainly! Let's go through each part of the problem step-by-step:
### (a) Grand Thermodynamic Potential [tex]\(\Omega(S, V, \mu) = E - \mu N\)[/tex]
1. Definition:
The grand thermodynamic potential is defined as:
[tex]\[ \Omega = E - \mu N \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy.
- [tex]\( \mu \)[/tex] is the chemical potential.
- [tex]\( N \)[/tex] is the number of particles.
2. Expression:
Substituting the variables directly, the expression remains:
[tex]\[ \Omega = E - \mu N \][/tex]
3. Maxwell Relations:
To derive Maxwell relations, we start with the differential form of [tex]\( \Omega \)[/tex]:
[tex]\[ d\Omega = dE - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relations [tex]\( dE = TdS - PdV + \mu dN \)[/tex], we get:
[tex]\[ d\Omega = TdS - PdV + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ d\Omega = TdS - PdV - N d\mu \][/tex]
Comparing coefficients in [tex]\( d\Omega = -SdT - PdV - N d\mu \)[/tex] with the earlier expression, we get the Maxwell relations:
[tex]\[ \left(\frac{\partial \Omega}{\partial T}\right)_{V, \mu} = -S, \quad \left(\frac{\partial \Omega}{\partial V}\right)_{T, \mu} = -P, \quad \left(\frac{\partial \Omega}{\partial \mu}\right)_{T, V} = -N \][/tex]
### (b) Nameless Thermodynamic Potential [tex]\( J(S, P, \mu) = H - \mu N \)[/tex]
1. Definition:
The nameless thermodynamic potential is given by:
[tex]\[ J = H - \mu N \][/tex]
Where [tex]\( H \)[/tex] is the enthalpy. The enthalpy [tex]\( H \)[/tex] is defined as:
[tex]\[ H = E + PV \][/tex]
2. Expression:
Substituting for [tex]\( H \)[/tex], we get:
[tex]\[ J = (E + PV) - \mu N \][/tex]
3. Maxwell Relations:
The differential form of [tex]\( J \)[/tex] is:
[tex]\[ dJ = dH - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relation [tex]\( dH = TdS + VdP + \mu dN \)[/tex], we get:
[tex]\[ dJ = TdS + VdP + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ dJ = TdS + VdP - N d\mu \][/tex]
Comparing coefficients in [tex]\( dJ = TdS + VdP - N d\mu \)[/tex], we derive the Maxwell relations:
[tex]\[ \left(\frac{\partial J}{\partial S}\right)_{P, \mu} = T, \quad \left(\frac{\partial J}{\partial P}\right)_{S, \mu} = V, \quad \left(\frac{\partial J}{\partial \mu}\right)_{S, P} = -N \][/tex]
### (c) Nameless Thermodynamic Potential [tex]\( K(T, V, \mu) = F - \mu N \)[/tex]
1. Definition:
The nameless thermodynamic potential is given by:
[tex]\[ K = F - \mu N \][/tex]
Where [tex]\( F \)[/tex] is the Helmholtz free energy. The Helmholtz free energy [tex]\( F \)[/tex] is defined as:
[tex]\[ F = E - TS \][/tex]
2. Expression:
Substituting for [tex]\( F \)[/tex], we get:
[tex]\[ K = (E - TS) - \mu N \][/tex]
3. Maxwell Relations:
The differential form of [tex]\( K \)[/tex] is:
[tex]\[ dK = dF - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relation [tex]\( dF = -SdT - PdV + \mu dN \)[/tex], we get:
[tex]\[ dK = -SdT - PdV + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ dK = -SdT - PdV - N d\mu \][/tex]
Comparing coefficients in [tex]\( dK = -SdT - PdV - N d\mu \)[/tex], we derive the Maxwell relations:
[tex]\[ \left(\frac{\partial K}{\partial T}\right)_{V, \mu} = -S, \quad \left(\frac{\partial K}{\partial V}\right)_{T, \mu} = -P, \quad \left(\frac{\partial K}{\partial \mu}\right)_{T, V} = -N \][/tex]
Thus, the respective potentials and their Maxwell relations are derived. The final expressions, validated by the given numerical answer, are:
1. [tex]\(\Omega = E - \mu N\)[/tex]
2. [tex]\(J = E - \mu N + PV\)[/tex]
3. [tex]\(K = E - K_B N T \left(\log\left(\frac{8.57300178108511 V (E m / (N h^2))^{1.5}}{N}\right) + 2.5\right) - \mu N\)[/tex]
### (a) Grand Thermodynamic Potential [tex]\(\Omega(S, V, \mu) = E - \mu N\)[/tex]
1. Definition:
The grand thermodynamic potential is defined as:
[tex]\[ \Omega = E - \mu N \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy.
- [tex]\( \mu \)[/tex] is the chemical potential.
- [tex]\( N \)[/tex] is the number of particles.
2. Expression:
Substituting the variables directly, the expression remains:
[tex]\[ \Omega = E - \mu N \][/tex]
3. Maxwell Relations:
To derive Maxwell relations, we start with the differential form of [tex]\( \Omega \)[/tex]:
[tex]\[ d\Omega = dE - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relations [tex]\( dE = TdS - PdV + \mu dN \)[/tex], we get:
[tex]\[ d\Omega = TdS - PdV + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ d\Omega = TdS - PdV - N d\mu \][/tex]
Comparing coefficients in [tex]\( d\Omega = -SdT - PdV - N d\mu \)[/tex] with the earlier expression, we get the Maxwell relations:
[tex]\[ \left(\frac{\partial \Omega}{\partial T}\right)_{V, \mu} = -S, \quad \left(\frac{\partial \Omega}{\partial V}\right)_{T, \mu} = -P, \quad \left(\frac{\partial \Omega}{\partial \mu}\right)_{T, V} = -N \][/tex]
### (b) Nameless Thermodynamic Potential [tex]\( J(S, P, \mu) = H - \mu N \)[/tex]
1. Definition:
The nameless thermodynamic potential is given by:
[tex]\[ J = H - \mu N \][/tex]
Where [tex]\( H \)[/tex] is the enthalpy. The enthalpy [tex]\( H \)[/tex] is defined as:
[tex]\[ H = E + PV \][/tex]
2. Expression:
Substituting for [tex]\( H \)[/tex], we get:
[tex]\[ J = (E + PV) - \mu N \][/tex]
3. Maxwell Relations:
The differential form of [tex]\( J \)[/tex] is:
[tex]\[ dJ = dH - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relation [tex]\( dH = TdS + VdP + \mu dN \)[/tex], we get:
[tex]\[ dJ = TdS + VdP + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ dJ = TdS + VdP - N d\mu \][/tex]
Comparing coefficients in [tex]\( dJ = TdS + VdP - N d\mu \)[/tex], we derive the Maxwell relations:
[tex]\[ \left(\frac{\partial J}{\partial S}\right)_{P, \mu} = T, \quad \left(\frac{\partial J}{\partial P}\right)_{S, \mu} = V, \quad \left(\frac{\partial J}{\partial \mu}\right)_{S, P} = -N \][/tex]
### (c) Nameless Thermodynamic Potential [tex]\( K(T, V, \mu) = F - \mu N \)[/tex]
1. Definition:
The nameless thermodynamic potential is given by:
[tex]\[ K = F - \mu N \][/tex]
Where [tex]\( F \)[/tex] is the Helmholtz free energy. The Helmholtz free energy [tex]\( F \)[/tex] is defined as:
[tex]\[ F = E - TS \][/tex]
2. Expression:
Substituting for [tex]\( F \)[/tex], we get:
[tex]\[ K = (E - TS) - \mu N \][/tex]
3. Maxwell Relations:
The differential form of [tex]\( K \)[/tex] is:
[tex]\[ dK = dF - \mu dN - N d\mu \][/tex]
Using the fundamental thermodynamic relation [tex]\( dF = -SdT - PdV + \mu dN \)[/tex], we get:
[tex]\[ dK = -SdT - PdV + \mu dN - \mu dN - N d\mu \][/tex]
Simplifying:
[tex]\[ dK = -SdT - PdV - N d\mu \][/tex]
Comparing coefficients in [tex]\( dK = -SdT - PdV - N d\mu \)[/tex], we derive the Maxwell relations:
[tex]\[ \left(\frac{\partial K}{\partial T}\right)_{V, \mu} = -S, \quad \left(\frac{\partial K}{\partial V}\right)_{T, \mu} = -P, \quad \left(\frac{\partial K}{\partial \mu}\right)_{T, V} = -N \][/tex]
Thus, the respective potentials and their Maxwell relations are derived. The final expressions, validated by the given numerical answer, are:
1. [tex]\(\Omega = E - \mu N\)[/tex]
2. [tex]\(J = E - \mu N + PV\)[/tex]
3. [tex]\(K = E - K_B N T \left(\log\left(\frac{8.57300178108511 V (E m / (N h^2))^{1.5}}{N}\right) + 2.5\right) - \mu N\)[/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.