IDNLearn.com connects you with a community of experts ready to answer your questions. Get accurate and comprehensive answers from our network of experienced professionals.
Sagot :
Certainly! Let's tackle this problem step-by-step.
### Given:
- The [tex]\( m \)[/tex]-th term of an Arithmetic Progression (A.P.) is [tex]\( m \times \)[/tex] term [tex]\( T_m \)[/tex].
- The [tex]\( n \)[/tex]-th term of the A.P. is [tex]\( n \times \)[/tex] term [tex]\( T_n \)[/tex].
- It is given that [tex]\( m \times T_m = n \times T_n \)[/tex].
### Step-by-Step Solution:
1. Express the Terms in A.P.:
Let's denote the first term of the A.P. as [tex]\( a \)[/tex] and the common difference as [tex]\( d \)[/tex].
The general term [tex]\( T_k \)[/tex] of an A.P. can be written as:
[tex]\[ T_k = a + (k-1)d \][/tex]
2. Write [tex]\( T_m \)[/tex] and [tex]\( T_n \)[/tex]:
For the [tex]\( m \)[/tex]-th term:
[tex]\[ T_m = a + (m-1)d \][/tex]
For the [tex]\( n \)[/tex]-th term:
[tex]\[ T_n = a + (n-1)d \][/tex]
3. Express the Given Condition:
According to the problem, [tex]\( m \)[/tex] times the [tex]\( m \)[/tex]-th term equals [tex]\( n \)[/tex] times the [tex]\( n \)[/tex]-th term. Therefore:
[tex]\[ m \times T_m = n \times T_n \][/tex]
Substituting the terms:
[tex]\[ m \times (a + (m-1)d) = n \times (a + (n-1)d) \][/tex]
4. Expand and Simplify:
Distribute [tex]\( m \)[/tex] and [tex]\( n \)[/tex] respectively:
[tex]\[ ma + m(m-1)d = na + n(n-1)d \][/tex]
Simplify the equation:
[tex]\[ ma + m^2d - md = na + n^2d - nd \][/tex]
Rearrange the terms on each side:
[tex]\[ ma + m^2d - md = na + n^2d - nd \][/tex]
5. Combine Like Terms:
Moving all terms involving [tex]\( a \)[/tex] and [tex]\( d \)[/tex] to one side:
[tex]\[ ma - na + m^2d - md - n^2d + nd = 0 \][/tex]
Factor out [tex]\( a \)[/tex] and [tex]\( d \)[/tex]:
[tex]\[ (m - n)a + (m^2 - m)d - (n^2 - n)d = 0 \][/tex]
Combine like terms involving [tex]\( d \)[/tex]:
[tex]\[ (m - n)a + (m^2 - m - n^2 + n)d = 0 \][/tex]
Notice that:
[tex]\[ m^2 - m - n^2 + n = (m^2 - n^2) - (m - n) \][/tex]
Factor further:
[tex]\[ (m - n)a + (m + n)(m - n)d - (m - n)d = 0 \][/tex]
6. Simplify Further:
Factoring out [tex]\( (m - n) \)[/tex]:
[tex]\[ (m - n)\left[a + (m+n)d - d \right] = 0 \][/tex]
Since [tex]\( m \neq n \)[/tex]:
[tex]\[ a + (m+n)d - d = 0 \][/tex]
Simplify:
[tex]\[ a + md + nd - d = 0 \][/tex]
Simplify further:
[tex]\[ a + (m+n-1)d = 0 \][/tex]
7. Find the [tex]\( mn \)[/tex]-th Term:
Now, we need to show that the [tex]\( (mn) \)[/tex]-th term of the A.P. is zero. The [tex]\( (mn) \)[/tex]-th term [tex]\( T_{mn} \)[/tex] is:
[tex]\[ T_{mn} = a + (mn-1)d \][/tex]
8. Substitute and Simplify:
From the previous condition, we have [tex]\( a = - (m+n-1)d \)[/tex]. Substitute this in [tex]\( T_{mn} \)[/tex]:
[tex]\[ T_{mn} = - (m+n-1)d + (mn-1)d \][/tex]
Combine the terms:
[tex]\[ T_{mn} = (mn - 1 - m - n + 1)d \][/tex]
Simplify the expression:
[tex]\[ T_{mn} = (mn - m - n)d \][/tex]
Recall from our condition, [tex]\( a + (m+n-1)d = 0 \)[/tex], so:
[tex]\[ a = -(m+n-1)d \][/tex]
9. Observe Zero Result:
Substitute [tex]\( a \)[/tex]:
[tex]\[ a + (mn-1)d = -(m+n-1)d + (mn-1)d \][/tex]
Simplify:
[tex]\[ T_{mn} = (mn - 1 - m - n + 1)d = (mn - m - n)d = 0 \][/tex]
Therefore, we have shown that the [tex]\( (mn) \)[/tex]-th term of the Arithmetic Progression is zero:
[tex]\[ T_{mn} = 0 \][/tex]
This completes the proof.
### Given:
- The [tex]\( m \)[/tex]-th term of an Arithmetic Progression (A.P.) is [tex]\( m \times \)[/tex] term [tex]\( T_m \)[/tex].
- The [tex]\( n \)[/tex]-th term of the A.P. is [tex]\( n \times \)[/tex] term [tex]\( T_n \)[/tex].
- It is given that [tex]\( m \times T_m = n \times T_n \)[/tex].
### Step-by-Step Solution:
1. Express the Terms in A.P.:
Let's denote the first term of the A.P. as [tex]\( a \)[/tex] and the common difference as [tex]\( d \)[/tex].
The general term [tex]\( T_k \)[/tex] of an A.P. can be written as:
[tex]\[ T_k = a + (k-1)d \][/tex]
2. Write [tex]\( T_m \)[/tex] and [tex]\( T_n \)[/tex]:
For the [tex]\( m \)[/tex]-th term:
[tex]\[ T_m = a + (m-1)d \][/tex]
For the [tex]\( n \)[/tex]-th term:
[tex]\[ T_n = a + (n-1)d \][/tex]
3. Express the Given Condition:
According to the problem, [tex]\( m \)[/tex] times the [tex]\( m \)[/tex]-th term equals [tex]\( n \)[/tex] times the [tex]\( n \)[/tex]-th term. Therefore:
[tex]\[ m \times T_m = n \times T_n \][/tex]
Substituting the terms:
[tex]\[ m \times (a + (m-1)d) = n \times (a + (n-1)d) \][/tex]
4. Expand and Simplify:
Distribute [tex]\( m \)[/tex] and [tex]\( n \)[/tex] respectively:
[tex]\[ ma + m(m-1)d = na + n(n-1)d \][/tex]
Simplify the equation:
[tex]\[ ma + m^2d - md = na + n^2d - nd \][/tex]
Rearrange the terms on each side:
[tex]\[ ma + m^2d - md = na + n^2d - nd \][/tex]
5. Combine Like Terms:
Moving all terms involving [tex]\( a \)[/tex] and [tex]\( d \)[/tex] to one side:
[tex]\[ ma - na + m^2d - md - n^2d + nd = 0 \][/tex]
Factor out [tex]\( a \)[/tex] and [tex]\( d \)[/tex]:
[tex]\[ (m - n)a + (m^2 - m)d - (n^2 - n)d = 0 \][/tex]
Combine like terms involving [tex]\( d \)[/tex]:
[tex]\[ (m - n)a + (m^2 - m - n^2 + n)d = 0 \][/tex]
Notice that:
[tex]\[ m^2 - m - n^2 + n = (m^2 - n^2) - (m - n) \][/tex]
Factor further:
[tex]\[ (m - n)a + (m + n)(m - n)d - (m - n)d = 0 \][/tex]
6. Simplify Further:
Factoring out [tex]\( (m - n) \)[/tex]:
[tex]\[ (m - n)\left[a + (m+n)d - d \right] = 0 \][/tex]
Since [tex]\( m \neq n \)[/tex]:
[tex]\[ a + (m+n)d - d = 0 \][/tex]
Simplify:
[tex]\[ a + md + nd - d = 0 \][/tex]
Simplify further:
[tex]\[ a + (m+n-1)d = 0 \][/tex]
7. Find the [tex]\( mn \)[/tex]-th Term:
Now, we need to show that the [tex]\( (mn) \)[/tex]-th term of the A.P. is zero. The [tex]\( (mn) \)[/tex]-th term [tex]\( T_{mn} \)[/tex] is:
[tex]\[ T_{mn} = a + (mn-1)d \][/tex]
8. Substitute and Simplify:
From the previous condition, we have [tex]\( a = - (m+n-1)d \)[/tex]. Substitute this in [tex]\( T_{mn} \)[/tex]:
[tex]\[ T_{mn} = - (m+n-1)d + (mn-1)d \][/tex]
Combine the terms:
[tex]\[ T_{mn} = (mn - 1 - m - n + 1)d \][/tex]
Simplify the expression:
[tex]\[ T_{mn} = (mn - m - n)d \][/tex]
Recall from our condition, [tex]\( a + (m+n-1)d = 0 \)[/tex], so:
[tex]\[ a = -(m+n-1)d \][/tex]
9. Observe Zero Result:
Substitute [tex]\( a \)[/tex]:
[tex]\[ a + (mn-1)d = -(m+n-1)d + (mn-1)d \][/tex]
Simplify:
[tex]\[ T_{mn} = (mn - 1 - m - n + 1)d = (mn - m - n)d = 0 \][/tex]
Therefore, we have shown that the [tex]\( (mn) \)[/tex]-th term of the Arithmetic Progression is zero:
[tex]\[ T_{mn} = 0 \][/tex]
This completes the proof.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.