Expand your horizons with the diverse and informative answers found on IDNLearn.com. Our platform offers detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
Certainly! Let's address each part of the problem step-by-step, using the Maxwell velocity distribution for a gas of molecules in thermal equilibrium.
### Part (a) [tex]\(\overline{v_x^2}\)[/tex]
The Maxwell velocity distribution for a single component [tex]\(v_x\)[/tex] is given by:
[tex]\[ f(v_x) = \sqrt{\frac{m}{2\pi kT}} \exp\left(-\frac{mv_x^2}{2kT}\right) \][/tex]
We need to find [tex]\(\overline{v_x^2}\)[/tex]:
[tex]\[ \overline{v_x^2} = \int_{-\infty}^\infty v_x^2 f(v_x) \, dv_x \][/tex]
Substitute [tex]\( f(v_x) \)[/tex] into the integral:
[tex]\[ \overline{v_x^2} = \int_{-\infty}^\infty v_x^2 \sqrt{\frac{m}{2\pi kT}} \exp\left(-\frac{mv_x^2}{2kT}\right) dv_x \][/tex]
Let's simplify by using a substitution. Let [tex]\( u = \sqrt{\frac{m}{2kT}} v_x \)[/tex], hence [tex]\( dv_x = \sqrt{\frac{2kT}{m}} du \)[/tex]:
[tex]\[ \overline{v_x^2} = \int_{-\infty}^\infty \left( \frac{2kT}{m} u^2 \right) \frac{1}{\sqrt{\pi}} \exp(-u^2) \sqrt{\frac{2kT}{m}} du \][/tex]
[tex]\[ \overline{v_x^2} = \frac{2kT}{m} \int_{-\infty}^\infty \frac{u^2}{\sqrt{\pi}} \exp(-u^2) du \][/tex]
The integral [tex]\(\int_{-\infty}^\infty \frac{u^2}{\sqrt{\pi}} \exp(-u^2) du\)[/tex] is a known result that evaluates to [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \overline{v_x^2} = \frac{2kT}{m} \cdot \frac{1}{2} = \frac{kT}{m} \][/tex]
### Part (b) [tex]\(\overline{v^2 v_x}\)[/tex]
Here, [tex]\( v \)[/tex] is the magnitude of the velocity vector, given by [tex]\( v = \sqrt{v_x^2 + v_y^2 + v_z^2} \)[/tex]. Using the same distribution, we express the distribution in three dimensions:
[tex]\[ f(v_x, v_y, v_z) = \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2kT}\right) \][/tex]
To find [tex]\(\overline{v^2 v_x}\)[/tex]:
[tex]\[ \overline{v^2 v_x} = \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty v^2 v_x f(v_x, v_y, v_z) dv_x dv_y dv_z \][/tex]
Let's use spherical coordinates ([tex]\(v, \theta, \phi\)[/tex]) where [tex]\(v_x = v \cos \theta\)[/tex]:
[tex]\[ v^2 = v^2 \text{ and } dv_x dv_y dv_z = v^2 \sin \theta dv d\theta d\phi \][/tex]
[tex]\[ \overline{v^2 v_x} = \int_{0}^\infty \int_{0}^\pi \int_{0}^{2\pi} v^2 (v \cos\theta) f(v) v^2 \sin \theta d\phi d\theta dv \][/tex]
Integrating with respect to [tex]\(\phi\)[/tex] and normalizing factors:
[tex]\[ \overline{v^2 v_x} = \int_{0}^\infty \int_{0}^\pi v^3 \cos \theta \left( v^2 \sin \theta \right) \left( \frac{m}{2\pi kT} \right)^{3/2} \exp \left( - \frac{m v^2}{2 k T} \right) d\theta dv \][/tex]
The [tex]\(\phi\)[/tex] integral yields [tex]\(2\pi\)[/tex]. The [tex]\(\cos\theta\cdot\sin\theta\)[/tex] integral will yield zero because cosine is an odd function integrated over a symmetric interval around zero. Hence,
[tex]\[ \overline{v^2 v_x} = 0 \][/tex]
### Part (c) [tex]\(\overline{v_x^2 v_y^2}\)[/tex]
Using the symmetry in the Maxwell-Boltzmann distribution and recognizing independence of the velocity components:
[tex]\[ \overline{v_x^2 v_y^2} \][/tex]
The calculation involves the product of two independent distributions:
[tex]\[ \overline{v_x^2 v_y^2} = \left( \overline{v_x^2} \right) \left( \overline{v_y^2} \right) \][/tex]
Given that both [tex]\( \overline{v_x^2} \)[/tex] and [tex]\( \overline{v_y^2} \)[/tex] equal [tex]\(\frac{kT}{m}\)[/tex]:
[tex]\[ \overline{v_x^2 v_y^2} = \left( \frac{kT}{m} \right) \left( \frac{kT}{m} \right) = \left( \frac{kT}{m} \right)^2 \][/tex]
In summary:
1. [tex]\(\overline{v_x^2} = \frac{kT}{m}\)[/tex]
2. [tex]\(\overline{v^2 v_x} = 0 \)[/tex]
3. [tex]\(\overline{v_x^2 v_y^2} = \left( \frac{kT}{m} \right)^2\)[/tex]
### Part (a) [tex]\(\overline{v_x^2}\)[/tex]
The Maxwell velocity distribution for a single component [tex]\(v_x\)[/tex] is given by:
[tex]\[ f(v_x) = \sqrt{\frac{m}{2\pi kT}} \exp\left(-\frac{mv_x^2}{2kT}\right) \][/tex]
We need to find [tex]\(\overline{v_x^2}\)[/tex]:
[tex]\[ \overline{v_x^2} = \int_{-\infty}^\infty v_x^2 f(v_x) \, dv_x \][/tex]
Substitute [tex]\( f(v_x) \)[/tex] into the integral:
[tex]\[ \overline{v_x^2} = \int_{-\infty}^\infty v_x^2 \sqrt{\frac{m}{2\pi kT}} \exp\left(-\frac{mv_x^2}{2kT}\right) dv_x \][/tex]
Let's simplify by using a substitution. Let [tex]\( u = \sqrt{\frac{m}{2kT}} v_x \)[/tex], hence [tex]\( dv_x = \sqrt{\frac{2kT}{m}} du \)[/tex]:
[tex]\[ \overline{v_x^2} = \int_{-\infty}^\infty \left( \frac{2kT}{m} u^2 \right) \frac{1}{\sqrt{\pi}} \exp(-u^2) \sqrt{\frac{2kT}{m}} du \][/tex]
[tex]\[ \overline{v_x^2} = \frac{2kT}{m} \int_{-\infty}^\infty \frac{u^2}{\sqrt{\pi}} \exp(-u^2) du \][/tex]
The integral [tex]\(\int_{-\infty}^\infty \frac{u^2}{\sqrt{\pi}} \exp(-u^2) du\)[/tex] is a known result that evaluates to [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \overline{v_x^2} = \frac{2kT}{m} \cdot \frac{1}{2} = \frac{kT}{m} \][/tex]
### Part (b) [tex]\(\overline{v^2 v_x}\)[/tex]
Here, [tex]\( v \)[/tex] is the magnitude of the velocity vector, given by [tex]\( v = \sqrt{v_x^2 + v_y^2 + v_z^2} \)[/tex]. Using the same distribution, we express the distribution in three dimensions:
[tex]\[ f(v_x, v_y, v_z) = \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2kT}\right) \][/tex]
To find [tex]\(\overline{v^2 v_x}\)[/tex]:
[tex]\[ \overline{v^2 v_x} = \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty v^2 v_x f(v_x, v_y, v_z) dv_x dv_y dv_z \][/tex]
Let's use spherical coordinates ([tex]\(v, \theta, \phi\)[/tex]) where [tex]\(v_x = v \cos \theta\)[/tex]:
[tex]\[ v^2 = v^2 \text{ and } dv_x dv_y dv_z = v^2 \sin \theta dv d\theta d\phi \][/tex]
[tex]\[ \overline{v^2 v_x} = \int_{0}^\infty \int_{0}^\pi \int_{0}^{2\pi} v^2 (v \cos\theta) f(v) v^2 \sin \theta d\phi d\theta dv \][/tex]
Integrating with respect to [tex]\(\phi\)[/tex] and normalizing factors:
[tex]\[ \overline{v^2 v_x} = \int_{0}^\infty \int_{0}^\pi v^3 \cos \theta \left( v^2 \sin \theta \right) \left( \frac{m}{2\pi kT} \right)^{3/2} \exp \left( - \frac{m v^2}{2 k T} \right) d\theta dv \][/tex]
The [tex]\(\phi\)[/tex] integral yields [tex]\(2\pi\)[/tex]. The [tex]\(\cos\theta\cdot\sin\theta\)[/tex] integral will yield zero because cosine is an odd function integrated over a symmetric interval around zero. Hence,
[tex]\[ \overline{v^2 v_x} = 0 \][/tex]
### Part (c) [tex]\(\overline{v_x^2 v_y^2}\)[/tex]
Using the symmetry in the Maxwell-Boltzmann distribution and recognizing independence of the velocity components:
[tex]\[ \overline{v_x^2 v_y^2} \][/tex]
The calculation involves the product of two independent distributions:
[tex]\[ \overline{v_x^2 v_y^2} = \left( \overline{v_x^2} \right) \left( \overline{v_y^2} \right) \][/tex]
Given that both [tex]\( \overline{v_x^2} \)[/tex] and [tex]\( \overline{v_y^2} \)[/tex] equal [tex]\(\frac{kT}{m}\)[/tex]:
[tex]\[ \overline{v_x^2 v_y^2} = \left( \frac{kT}{m} \right) \left( \frac{kT}{m} \right) = \left( \frac{kT}{m} \right)^2 \][/tex]
In summary:
1. [tex]\(\overline{v_x^2} = \frac{kT}{m}\)[/tex]
2. [tex]\(\overline{v^2 v_x} = 0 \)[/tex]
3. [tex]\(\overline{v_x^2 v_y^2} = \left( \frac{kT}{m} \right)^2\)[/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.