IDNLearn.com is your go-to resource for finding answers to any question you have. Discover in-depth answers to your questions from our community of experienced professionals.
Sagot :
Alright, we need to determine the occupation number of particles according to three different statistical distributions at 100 K, energy state of 0.1 eV, and Boltzmann constant [tex]\( k_B = 1.38 \times 10^{-23} \)[/tex] J/K.
### Given:
- Temperature, [tex]\( T = 100 \)[/tex] K
- Energy, [tex]\( E = 0.1 \)[/tex] eV [tex]\( = 0.1 \times 1.60218 \times 10^{-19} \)[/tex] J [tex]\( = 1.60218 \times 10^{-20} \)[/tex] J
- Boltzmann constant, [tex]\( k_B = 1.38 \times 10^{-23} \)[/tex] J/K
First, we calculate the ratio [tex]\(\frac{E}{k_B T}\)[/tex]:
[tex]\[ \frac{E}{k_B T} = \frac{1.60218 \times 10^{-20}}{1.38 \times 10^{-23} \times 100} \][/tex]
Simplifying the expression within the exponential, we get:
[tex]\[ \frac{E}{k_B T} \approx 1.160997 \][/tex]
#### (a) Fermi-Dirac Statistics
The occupation number according to Fermi-Dirac statistics is given by:
[tex]\[ f_{FD} = \frac{1}{1 + e^{\frac{E}{k_B T}}} \][/tex]
Substituting the earlier ratio [tex]\(\frac{E}{k_B T} \approx 1.160997\)[/tex]:
[tex]\[ f_{FD} = \frac{1}{1 + e^{1.160997}} \][/tex]
We evaluated:
[tex]\[ f_{FD} \approx 9.074801286636516 \times 10^{-6} \][/tex]
#### (b) Classical (Maxwell-Boltzmann) Statistics
The occupation number according to Maxwell-Boltzmann statistics is given by:
[tex]\[ f_{MB} = e^{-\frac{E}{k_B T}} \][/tex]
Using the ratio [tex]\( \frac{E}{k_B T} \approx 1.160997 \)[/tex]:
[tex]\[ f_{MB} = e^{-1.160997} \][/tex]
We evaluated:
[tex]\[ f_{MB} \approx 9.074883639402245 \times 10^{-6} \][/tex]
#### (c) Bose-Einstein Statistics
The occupation number according to Bose-Einstein statistics is given by:
[tex]\[ f_{BE} = \frac{1}{e^{\frac{E}{k_B T}} - 1} \][/tex]
Again substituting [tex]\( \frac{E}{k_B T} \approx 1.160997 \)[/tex]:
[tex]\[ f_{BE} = \frac{1}{e^{1.160997} - 1} \][/tex]
We evaluated:
[tex]\[ f_{BE} \approx 9.074965993662668 \times 10^{-6} \][/tex]
### Summary:
- Fermi-Dirac (F-D) occupation number: [tex]\( f_{FD} \approx 9.074801286636516 \times 10^{-6} \)[/tex]
- Maxwell-Boltzmann (classical) occupation number: [tex]\( f_{MB} \approx 9.074883639402245 \times 10^{-6} \)[/tex]
- Bose-Einstein (B-E) occupation number: [tex]\( f_{BE} \approx 9.074965993662668 \times 10^{-6} \)[/tex]
These results indicate the probability of occupation for each statistical distribution at the given temperature and energy state.
### Given:
- Temperature, [tex]\( T = 100 \)[/tex] K
- Energy, [tex]\( E = 0.1 \)[/tex] eV [tex]\( = 0.1 \times 1.60218 \times 10^{-19} \)[/tex] J [tex]\( = 1.60218 \times 10^{-20} \)[/tex] J
- Boltzmann constant, [tex]\( k_B = 1.38 \times 10^{-23} \)[/tex] J/K
First, we calculate the ratio [tex]\(\frac{E}{k_B T}\)[/tex]:
[tex]\[ \frac{E}{k_B T} = \frac{1.60218 \times 10^{-20}}{1.38 \times 10^{-23} \times 100} \][/tex]
Simplifying the expression within the exponential, we get:
[tex]\[ \frac{E}{k_B T} \approx 1.160997 \][/tex]
#### (a) Fermi-Dirac Statistics
The occupation number according to Fermi-Dirac statistics is given by:
[tex]\[ f_{FD} = \frac{1}{1 + e^{\frac{E}{k_B T}}} \][/tex]
Substituting the earlier ratio [tex]\(\frac{E}{k_B T} \approx 1.160997\)[/tex]:
[tex]\[ f_{FD} = \frac{1}{1 + e^{1.160997}} \][/tex]
We evaluated:
[tex]\[ f_{FD} \approx 9.074801286636516 \times 10^{-6} \][/tex]
#### (b) Classical (Maxwell-Boltzmann) Statistics
The occupation number according to Maxwell-Boltzmann statistics is given by:
[tex]\[ f_{MB} = e^{-\frac{E}{k_B T}} \][/tex]
Using the ratio [tex]\( \frac{E}{k_B T} \approx 1.160997 \)[/tex]:
[tex]\[ f_{MB} = e^{-1.160997} \][/tex]
We evaluated:
[tex]\[ f_{MB} \approx 9.074883639402245 \times 10^{-6} \][/tex]
#### (c) Bose-Einstein Statistics
The occupation number according to Bose-Einstein statistics is given by:
[tex]\[ f_{BE} = \frac{1}{e^{\frac{E}{k_B T}} - 1} \][/tex]
Again substituting [tex]\( \frac{E}{k_B T} \approx 1.160997 \)[/tex]:
[tex]\[ f_{BE} = \frac{1}{e^{1.160997} - 1} \][/tex]
We evaluated:
[tex]\[ f_{BE} \approx 9.074965993662668 \times 10^{-6} \][/tex]
### Summary:
- Fermi-Dirac (F-D) occupation number: [tex]\( f_{FD} \approx 9.074801286636516 \times 10^{-6} \)[/tex]
- Maxwell-Boltzmann (classical) occupation number: [tex]\( f_{MB} \approx 9.074883639402245 \times 10^{-6} \)[/tex]
- Bose-Einstein (B-E) occupation number: [tex]\( f_{BE} \approx 9.074965993662668 \times 10^{-6} \)[/tex]
These results indicate the probability of occupation for each statistical distribution at the given temperature and energy state.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.