IDNLearn.com offers expert insights and community wisdom to answer your queries. Get accurate and detailed answers to your questions from our dedicated community members who are always ready to help.

6. If a system is at 100 K, at a state of energy 0.1 eV and [tex]$K _{ B }=1.38 \times 10^{-23} J / K$[/tex] above the chemical potential, what is the occupation number of particles according to:

(a) F-D statistics,
(b) classical statistics,
(c) B-E statistics.


Sagot :

Alright, we need to determine the occupation number of particles according to three different statistical distributions at 100 K, energy state of 0.1 eV, and Boltzmann constant [tex]\( k_B = 1.38 \times 10^{-23} \)[/tex] J/K.

### Given:
- Temperature, [tex]\( T = 100 \)[/tex] K
- Energy, [tex]\( E = 0.1 \)[/tex] eV [tex]\( = 0.1 \times 1.60218 \times 10^{-19} \)[/tex] J [tex]\( = 1.60218 \times 10^{-20} \)[/tex] J
- Boltzmann constant, [tex]\( k_B = 1.38 \times 10^{-23} \)[/tex] J/K

First, we calculate the ratio [tex]\(\frac{E}{k_B T}\)[/tex]:

[tex]\[ \frac{E}{k_B T} = \frac{1.60218 \times 10^{-20}}{1.38 \times 10^{-23} \times 100} \][/tex]

Simplifying the expression within the exponential, we get:

[tex]\[ \frac{E}{k_B T} \approx 1.160997 \][/tex]

#### (a) Fermi-Dirac Statistics

The occupation number according to Fermi-Dirac statistics is given by:

[tex]\[ f_{FD} = \frac{1}{1 + e^{\frac{E}{k_B T}}} \][/tex]

Substituting the earlier ratio [tex]\(\frac{E}{k_B T} \approx 1.160997\)[/tex]:

[tex]\[ f_{FD} = \frac{1}{1 + e^{1.160997}} \][/tex]

We evaluated:

[tex]\[ f_{FD} \approx 9.074801286636516 \times 10^{-6} \][/tex]

#### (b) Classical (Maxwell-Boltzmann) Statistics

The occupation number according to Maxwell-Boltzmann statistics is given by:

[tex]\[ f_{MB} = e^{-\frac{E}{k_B T}} \][/tex]

Using the ratio [tex]\( \frac{E}{k_B T} \approx 1.160997 \)[/tex]:

[tex]\[ f_{MB} = e^{-1.160997} \][/tex]

We evaluated:

[tex]\[ f_{MB} \approx 9.074883639402245 \times 10^{-6} \][/tex]

#### (c) Bose-Einstein Statistics

The occupation number according to Bose-Einstein statistics is given by:

[tex]\[ f_{BE} = \frac{1}{e^{\frac{E}{k_B T}} - 1} \][/tex]

Again substituting [tex]\( \frac{E}{k_B T} \approx 1.160997 \)[/tex]:

[tex]\[ f_{BE} = \frac{1}{e^{1.160997} - 1} \][/tex]

We evaluated:

[tex]\[ f_{BE} \approx 9.074965993662668 \times 10^{-6} \][/tex]

### Summary:
- Fermi-Dirac (F-D) occupation number: [tex]\( f_{FD} \approx 9.074801286636516 \times 10^{-6} \)[/tex]
- Maxwell-Boltzmann (classical) occupation number: [tex]\( f_{MB} \approx 9.074883639402245 \times 10^{-6} \)[/tex]
- Bose-Einstein (B-E) occupation number: [tex]\( f_{BE} \approx 9.074965993662668 \times 10^{-6} \)[/tex]

These results indicate the probability of occupation for each statistical distribution at the given temperature and energy state.