Find answers to your most challenging questions with the help of IDNLearn.com's experts. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.
Sagot :
To determine which model best represents the data in the table, we need to compare the sum of squared errors (SSE) for each model. The SSE measures how well each model's predicted values match the actual data points.
Based on the provided information, let's examine the estimated lines of code per hour for different numbers of programmers [tex]\(x\)[/tex] and match them to the respective models. The [tex]\(y\)[/tex]-values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & \text{(not defined)} \\ \hline 4 & 50 \\ \hline 6 & 110 \\ \hline 8 & 160 \\ \hline 10 & 210 \\ \hline 12 & 320 \\ \hline \end{array} \][/tex]
The models provided are:
1. [tex]\( y = 47(1.191)^x \)[/tex]
2. [tex]\( y = 34(1.204)^x \)[/tex]
3. [tex]\( y = 26.9x - 1.3 \)[/tex]
4. [tex]\( y = 27x - 4 \)[/tex]
We have the sum of squared errors for each model:
1. 11026.27
2. 677.25
3. 11916.45
4. 11060.00
The model with the smallest sum of squared errors is the model that best fits the data. Here's the SSE for each model:
1. For [tex]\( y = 47(1.191)^x \)[/tex]: SSE = 11026.27
2. For [tex]\( y = 34(1.204)^x \)[/tex]: SSE = 677.25
3. For [tex]\( y = 26.9x - 1.3 \)[/tex]: SSE = 11916.45
4. For [tex]\( y = 27x - 4 \)[/tex]: SSE = 11060.00
Comparing these errors, we see that the smallest SSE is 677.25 for the model [tex]\( y = 34(1.204)^x \)[/tex].
Thus, the model that best represents the data is:
[tex]\[ y = 34(1.204)^x \][/tex]
Based on the provided information, let's examine the estimated lines of code per hour for different numbers of programmers [tex]\(x\)[/tex] and match them to the respective models. The [tex]\(y\)[/tex]-values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & \text{(not defined)} \\ \hline 4 & 50 \\ \hline 6 & 110 \\ \hline 8 & 160 \\ \hline 10 & 210 \\ \hline 12 & 320 \\ \hline \end{array} \][/tex]
The models provided are:
1. [tex]\( y = 47(1.191)^x \)[/tex]
2. [tex]\( y = 34(1.204)^x \)[/tex]
3. [tex]\( y = 26.9x - 1.3 \)[/tex]
4. [tex]\( y = 27x - 4 \)[/tex]
We have the sum of squared errors for each model:
1. 11026.27
2. 677.25
3. 11916.45
4. 11060.00
The model with the smallest sum of squared errors is the model that best fits the data. Here's the SSE for each model:
1. For [tex]\( y = 47(1.191)^x \)[/tex]: SSE = 11026.27
2. For [tex]\( y = 34(1.204)^x \)[/tex]: SSE = 677.25
3. For [tex]\( y = 26.9x - 1.3 \)[/tex]: SSE = 11916.45
4. For [tex]\( y = 27x - 4 \)[/tex]: SSE = 11060.00
Comparing these errors, we see that the smallest SSE is 677.25 for the model [tex]\( y = 34(1.204)^x \)[/tex].
Thus, the model that best represents the data is:
[tex]\[ y = 34(1.204)^x \][/tex]
Thank you for participating in our discussion. We value every contribution. Keep sharing knowledge and helping others find the answers they need. Let's create a dynamic and informative learning environment together. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.