IDNLearn.com is committed to providing high-quality answers to your questions. Join our community to receive prompt and reliable responses to your questions from knowledgeable professionals.
Sagot :
Let's analyze the data and the given function [tex]\( f(t) = 349.2 \times (0.98)^t \)[/tex] to determine which temperature will be most accurately predicted by the model.
First, we will organize the necessary information and identify the key points to solve this problem:
1. Given Data Points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes)} & \text{Temperature (°F)} \\ \hline 5 & 315 \\ \hline 10 & 285 \\ \hline 15 & 260 \\ \hline 20 & 235 \\ \hline 25 & 210 \\ \hline \end{array} \][/tex]
2. Function for Cooling Temperature:
[tex]\[ f(t) = 349.2 \times (0.98)^t \][/tex]
3. Temperatures to Check:
- 0°F
- 100°F
- 300°F
- 400°F
Let's proceed by computing the predicted times for the given temperatures using the logarithmic transformation of the function [tex]\( f(t) \)[/tex]. Here's a step-by-step breakdown:
### Step-by-Step Analysis
1. Calculate Predicted Times:
To find the time [tex]\( t \)[/tex] corresponding to each temperature [tex]\( T \)[/tex]:
[tex]\[ T = 349.2 \times (0.98)^t \implies t = \frac{\log(T / 349.2)}{\log(0.98)} \][/tex]
Applying this formula:
- For 100°F:
[tex]\[ t = \frac{\log(100 / 349.2)}{\log(0.98)} \approx 61.90 \][/tex]
- For 300°F:
[tex]\[ t = \frac{\log(300 / 349.2)}{\log(0.98)} \approx 7.52 \][/tex]
- For 400°F:
[tex]\[ t = \frac{\log(400 / 349.2)}{\log(0.98)} \approx -6.72 \quad (\text{Not possible, as time cannot be negative}) \][/tex]
2. Calculate Errors for Given Data Points:
The error for each time is calculated as the absolute difference between the actual temperature and the modeled temperature [tex]\( f(t) \)[/tex]:
- At [tex]\( t = 5 \)[/tex]:
[tex]\[ \text{Error} = |315 - f(5)| \approx 0.65 \][/tex]
- At [tex]\( t = 10 \)[/tex]:
[tex]\[ \text{Error} = |285 - f(10)| \approx 0.32 \][/tex]
- At [tex]\( t = 15 \)[/tex]:
[tex]\[ \text{Error} = |260 - f(15)| \approx 2.09 \][/tex]
- At [tex]\( t = 20 \)[/tex]:
[tex]\[ \text{Error} = |235 - f(20)| \approx 1.87 \][/tex]
- At [tex]\( t = 25 \)[/tex]:
[tex]\[ \text{Error} = |210 - f(25)| \approx 0.73 \][/tex]
3. Identify Minimum Error:
The minimum error occurs at [tex]\( t = 10 \)[/tex]:
[tex]\[ \text{Error} \approx 0.32 \][/tex]
### Conclusion:
Among the temperatures provided (0°F, 100°F, 300°F, 400°F), and given the minimum error calculation for the cooling times, the model most accurately predicts the time spent cooling for the temperature [tex]\(285°F\)[/tex].
This corresponds to [tex]\( t = 10 \)[/tex] minutes, which had the minimum prediction error. Thus, the model most accurately predicts the time spent cooling for the temperature:
[tex]\[ \boxed{285 \text{°F}} \][/tex]
First, we will organize the necessary information and identify the key points to solve this problem:
1. Given Data Points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes)} & \text{Temperature (°F)} \\ \hline 5 & 315 \\ \hline 10 & 285 \\ \hline 15 & 260 \\ \hline 20 & 235 \\ \hline 25 & 210 \\ \hline \end{array} \][/tex]
2. Function for Cooling Temperature:
[tex]\[ f(t) = 349.2 \times (0.98)^t \][/tex]
3. Temperatures to Check:
- 0°F
- 100°F
- 300°F
- 400°F
Let's proceed by computing the predicted times for the given temperatures using the logarithmic transformation of the function [tex]\( f(t) \)[/tex]. Here's a step-by-step breakdown:
### Step-by-Step Analysis
1. Calculate Predicted Times:
To find the time [tex]\( t \)[/tex] corresponding to each temperature [tex]\( T \)[/tex]:
[tex]\[ T = 349.2 \times (0.98)^t \implies t = \frac{\log(T / 349.2)}{\log(0.98)} \][/tex]
Applying this formula:
- For 100°F:
[tex]\[ t = \frac{\log(100 / 349.2)}{\log(0.98)} \approx 61.90 \][/tex]
- For 300°F:
[tex]\[ t = \frac{\log(300 / 349.2)}{\log(0.98)} \approx 7.52 \][/tex]
- For 400°F:
[tex]\[ t = \frac{\log(400 / 349.2)}{\log(0.98)} \approx -6.72 \quad (\text{Not possible, as time cannot be negative}) \][/tex]
2. Calculate Errors for Given Data Points:
The error for each time is calculated as the absolute difference between the actual temperature and the modeled temperature [tex]\( f(t) \)[/tex]:
- At [tex]\( t = 5 \)[/tex]:
[tex]\[ \text{Error} = |315 - f(5)| \approx 0.65 \][/tex]
- At [tex]\( t = 10 \)[/tex]:
[tex]\[ \text{Error} = |285 - f(10)| \approx 0.32 \][/tex]
- At [tex]\( t = 15 \)[/tex]:
[tex]\[ \text{Error} = |260 - f(15)| \approx 2.09 \][/tex]
- At [tex]\( t = 20 \)[/tex]:
[tex]\[ \text{Error} = |235 - f(20)| \approx 1.87 \][/tex]
- At [tex]\( t = 25 \)[/tex]:
[tex]\[ \text{Error} = |210 - f(25)| \approx 0.73 \][/tex]
3. Identify Minimum Error:
The minimum error occurs at [tex]\( t = 10 \)[/tex]:
[tex]\[ \text{Error} \approx 0.32 \][/tex]
### Conclusion:
Among the temperatures provided (0°F, 100°F, 300°F, 400°F), and given the minimum error calculation for the cooling times, the model most accurately predicts the time spent cooling for the temperature [tex]\(285°F\)[/tex].
This corresponds to [tex]\( t = 10 \)[/tex] minutes, which had the minimum prediction error. Thus, the model most accurately predicts the time spent cooling for the temperature:
[tex]\[ \boxed{285 \text{°F}} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.