IDNLearn.com is designed to help you find the answers you need quickly and easily. Join our knowledgeable community and get detailed, reliable answers to all your questions.
Sagot :
Para resolver las ecuaciones cuadráticas de la forma [tex]\(ax^2 + bx + c = 0\)[/tex] utilizando la fórmula general, seguiremos los siguientes pasos:
La fórmula general para resolver una ecuación cuadrática es:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Donde [tex]\(a\)[/tex], [tex]\(b\)[/tex] y [tex]\(c\)[/tex] son los coeficientes de la ecuación cuadrática [tex]\(ax^2 + bx + c = 0\)[/tex].
### a. [tex]\(3x^2 - 14x - 5 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 3\)[/tex], [tex]\(b = -14\)[/tex], [tex]\(c = -5\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-14)^2 - 4 \cdot 3 \cdot (-5) = 196 + 60 = 256 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-14) \pm \sqrt{256}}{2 \cdot 3} = \frac{14 \pm 16}{6} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{14 + 16}{6} = \frac{30}{6} = 5 \][/tex]
[tex]\[ x_2 = \frac{14 - 16}{6} = \frac{-2}{6} = -\frac{1}{3} \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 5\)[/tex] y [tex]\(x_2 = -\frac{1}{3}\)[/tex].
### b. [tex]\(2x^2 + 9x + 4 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 2\)[/tex], [tex]\(b = 9\)[/tex], [tex]\(c = 4\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 9^2 - 4 \cdot 2 \cdot 4 = 81 - 32 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-9 \pm \sqrt{49}}{2 \cdot 2} = \frac{-9 \pm 7}{4} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{-9 + 7}{4} = \frac{-2}{4} = -0.5 \][/tex]
[tex]\[ x_2 = \frac{-9 - 7}{4} = \frac{-16}{4} = -4 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = -0.5\)[/tex] y [tex]\(x_2 = -4\)[/tex].
### c. [tex]\(10x^2 - 13x - 3 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 10\)[/tex], [tex]\(b = -13\)[/tex], [tex]\(c = -3\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-13)^2 - 4 \cdot 10 \cdot (-3) = 169 + 120 = 289 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-13) \pm \sqrt{289}}{2 \cdot 10} = \frac{13 \pm 17}{20} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{13 + 17}{20} = \frac{30}{20} = 1.5 \][/tex]
[tex]\[ x_2 = \frac{13 - 17}{20} = \frac{-4}{20} = -0.2 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 1.5\)[/tex] y [tex]\(x_2 = -0.2\)[/tex].
### d. [tex]\(6x^2 - x - 2 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 6\)[/tex], [tex]\(b = -1\)[/tex], [tex]\(c = -2\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-1)^2 - 4 \cdot 6 \cdot (-2) = 1 + 48 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-1) \pm \sqrt{49}}{2 \cdot 6} = \frac{1 \pm 7}{12} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{1 + 7}{12} = \frac{8}{12} = \frac{2}{3} \][/tex]
[tex]\[ x_2 = \frac{1 - 7}{12} = \frac{-6}{12} = -0.5 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = \frac{2}{3}\)[/tex] (o [tex]\(0.666666\)[/tex]) y [tex]\(x_2 = -0.5\)[/tex].
Por lo tanto, las soluciones a las ecuaciones cuadráticas son:
a. [tex]\(x_1 = 5\)[/tex], [tex]\(x_2 = -0.3333333\)[/tex]
b. [tex]\(x_1 = -0.5\)[/tex], [tex]\(x_2 = -4\)[/tex]
c. [tex]\(x_1 = 1.5\)[/tex], [tex]\(x_2 = -0.2\)[/tex]
d. [tex]\(x_1 = 0.666666\)[/tex], [tex]\(x_2 = -0.5\)[/tex]
La fórmula general para resolver una ecuación cuadrática es:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Donde [tex]\(a\)[/tex], [tex]\(b\)[/tex] y [tex]\(c\)[/tex] son los coeficientes de la ecuación cuadrática [tex]\(ax^2 + bx + c = 0\)[/tex].
### a. [tex]\(3x^2 - 14x - 5 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 3\)[/tex], [tex]\(b = -14\)[/tex], [tex]\(c = -5\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-14)^2 - 4 \cdot 3 \cdot (-5) = 196 + 60 = 256 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-14) \pm \sqrt{256}}{2 \cdot 3} = \frac{14 \pm 16}{6} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{14 + 16}{6} = \frac{30}{6} = 5 \][/tex]
[tex]\[ x_2 = \frac{14 - 16}{6} = \frac{-2}{6} = -\frac{1}{3} \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 5\)[/tex] y [tex]\(x_2 = -\frac{1}{3}\)[/tex].
### b. [tex]\(2x^2 + 9x + 4 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 2\)[/tex], [tex]\(b = 9\)[/tex], [tex]\(c = 4\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 9^2 - 4 \cdot 2 \cdot 4 = 81 - 32 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-9 \pm \sqrt{49}}{2 \cdot 2} = \frac{-9 \pm 7}{4} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{-9 + 7}{4} = \frac{-2}{4} = -0.5 \][/tex]
[tex]\[ x_2 = \frac{-9 - 7}{4} = \frac{-16}{4} = -4 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = -0.5\)[/tex] y [tex]\(x_2 = -4\)[/tex].
### c. [tex]\(10x^2 - 13x - 3 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 10\)[/tex], [tex]\(b = -13\)[/tex], [tex]\(c = -3\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-13)^2 - 4 \cdot 10 \cdot (-3) = 169 + 120 = 289 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-13) \pm \sqrt{289}}{2 \cdot 10} = \frac{13 \pm 17}{20} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{13 + 17}{20} = \frac{30}{20} = 1.5 \][/tex]
[tex]\[ x_2 = \frac{13 - 17}{20} = \frac{-4}{20} = -0.2 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 1.5\)[/tex] y [tex]\(x_2 = -0.2\)[/tex].
### d. [tex]\(6x^2 - x - 2 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 6\)[/tex], [tex]\(b = -1\)[/tex], [tex]\(c = -2\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-1)^2 - 4 \cdot 6 \cdot (-2) = 1 + 48 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-1) \pm \sqrt{49}}{2 \cdot 6} = \frac{1 \pm 7}{12} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{1 + 7}{12} = \frac{8}{12} = \frac{2}{3} \][/tex]
[tex]\[ x_2 = \frac{1 - 7}{12} = \frac{-6}{12} = -0.5 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = \frac{2}{3}\)[/tex] (o [tex]\(0.666666\)[/tex]) y [tex]\(x_2 = -0.5\)[/tex].
Por lo tanto, las soluciones a las ecuaciones cuadráticas son:
a. [tex]\(x_1 = 5\)[/tex], [tex]\(x_2 = -0.3333333\)[/tex]
b. [tex]\(x_1 = -0.5\)[/tex], [tex]\(x_2 = -4\)[/tex]
c. [tex]\(x_1 = 1.5\)[/tex], [tex]\(x_2 = -0.2\)[/tex]
d. [tex]\(x_1 = 0.666666\)[/tex], [tex]\(x_2 = -0.5\)[/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.