IDNLearn.com provides a user-friendly platform for finding and sharing accurate answers. Get the information you need quickly and accurately with our reliable and thorough Q&A platform.
Sagot :
Para resolver las ecuaciones cuadráticas de la forma [tex]\(ax^2 + bx + c = 0\)[/tex] utilizando la fórmula general, seguiremos los siguientes pasos:
La fórmula general para resolver una ecuación cuadrática es:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Donde [tex]\(a\)[/tex], [tex]\(b\)[/tex] y [tex]\(c\)[/tex] son los coeficientes de la ecuación cuadrática [tex]\(ax^2 + bx + c = 0\)[/tex].
### a. [tex]\(3x^2 - 14x - 5 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 3\)[/tex], [tex]\(b = -14\)[/tex], [tex]\(c = -5\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-14)^2 - 4 \cdot 3 \cdot (-5) = 196 + 60 = 256 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-14) \pm \sqrt{256}}{2 \cdot 3} = \frac{14 \pm 16}{6} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{14 + 16}{6} = \frac{30}{6} = 5 \][/tex]
[tex]\[ x_2 = \frac{14 - 16}{6} = \frac{-2}{6} = -\frac{1}{3} \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 5\)[/tex] y [tex]\(x_2 = -\frac{1}{3}\)[/tex].
### b. [tex]\(2x^2 + 9x + 4 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 2\)[/tex], [tex]\(b = 9\)[/tex], [tex]\(c = 4\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 9^2 - 4 \cdot 2 \cdot 4 = 81 - 32 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-9 \pm \sqrt{49}}{2 \cdot 2} = \frac{-9 \pm 7}{4} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{-9 + 7}{4} = \frac{-2}{4} = -0.5 \][/tex]
[tex]\[ x_2 = \frac{-9 - 7}{4} = \frac{-16}{4} = -4 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = -0.5\)[/tex] y [tex]\(x_2 = -4\)[/tex].
### c. [tex]\(10x^2 - 13x - 3 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 10\)[/tex], [tex]\(b = -13\)[/tex], [tex]\(c = -3\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-13)^2 - 4 \cdot 10 \cdot (-3) = 169 + 120 = 289 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-13) \pm \sqrt{289}}{2 \cdot 10} = \frac{13 \pm 17}{20} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{13 + 17}{20} = \frac{30}{20} = 1.5 \][/tex]
[tex]\[ x_2 = \frac{13 - 17}{20} = \frac{-4}{20} = -0.2 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 1.5\)[/tex] y [tex]\(x_2 = -0.2\)[/tex].
### d. [tex]\(6x^2 - x - 2 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 6\)[/tex], [tex]\(b = -1\)[/tex], [tex]\(c = -2\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-1)^2 - 4 \cdot 6 \cdot (-2) = 1 + 48 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-1) \pm \sqrt{49}}{2 \cdot 6} = \frac{1 \pm 7}{12} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{1 + 7}{12} = \frac{8}{12} = \frac{2}{3} \][/tex]
[tex]\[ x_2 = \frac{1 - 7}{12} = \frac{-6}{12} = -0.5 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = \frac{2}{3}\)[/tex] (o [tex]\(0.666666\)[/tex]) y [tex]\(x_2 = -0.5\)[/tex].
Por lo tanto, las soluciones a las ecuaciones cuadráticas son:
a. [tex]\(x_1 = 5\)[/tex], [tex]\(x_2 = -0.3333333\)[/tex]
b. [tex]\(x_1 = -0.5\)[/tex], [tex]\(x_2 = -4\)[/tex]
c. [tex]\(x_1 = 1.5\)[/tex], [tex]\(x_2 = -0.2\)[/tex]
d. [tex]\(x_1 = 0.666666\)[/tex], [tex]\(x_2 = -0.5\)[/tex]
La fórmula general para resolver una ecuación cuadrática es:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Donde [tex]\(a\)[/tex], [tex]\(b\)[/tex] y [tex]\(c\)[/tex] son los coeficientes de la ecuación cuadrática [tex]\(ax^2 + bx + c = 0\)[/tex].
### a. [tex]\(3x^2 - 14x - 5 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 3\)[/tex], [tex]\(b = -14\)[/tex], [tex]\(c = -5\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-14)^2 - 4 \cdot 3 \cdot (-5) = 196 + 60 = 256 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-14) \pm \sqrt{256}}{2 \cdot 3} = \frac{14 \pm 16}{6} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{14 + 16}{6} = \frac{30}{6} = 5 \][/tex]
[tex]\[ x_2 = \frac{14 - 16}{6} = \frac{-2}{6} = -\frac{1}{3} \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 5\)[/tex] y [tex]\(x_2 = -\frac{1}{3}\)[/tex].
### b. [tex]\(2x^2 + 9x + 4 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 2\)[/tex], [tex]\(b = 9\)[/tex], [tex]\(c = 4\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 9^2 - 4 \cdot 2 \cdot 4 = 81 - 32 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-9 \pm \sqrt{49}}{2 \cdot 2} = \frac{-9 \pm 7}{4} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{-9 + 7}{4} = \frac{-2}{4} = -0.5 \][/tex]
[tex]\[ x_2 = \frac{-9 - 7}{4} = \frac{-16}{4} = -4 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = -0.5\)[/tex] y [tex]\(x_2 = -4\)[/tex].
### c. [tex]\(10x^2 - 13x - 3 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 10\)[/tex], [tex]\(b = -13\)[/tex], [tex]\(c = -3\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-13)^2 - 4 \cdot 10 \cdot (-3) = 169 + 120 = 289 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-13) \pm \sqrt{289}}{2 \cdot 10} = \frac{13 \pm 17}{20} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{13 + 17}{20} = \frac{30}{20} = 1.5 \][/tex]
[tex]\[ x_2 = \frac{13 - 17}{20} = \frac{-4}{20} = -0.2 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 1.5\)[/tex] y [tex]\(x_2 = -0.2\)[/tex].
### d. [tex]\(6x^2 - x - 2 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 6\)[/tex], [tex]\(b = -1\)[/tex], [tex]\(c = -2\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-1)^2 - 4 \cdot 6 \cdot (-2) = 1 + 48 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-1) \pm \sqrt{49}}{2 \cdot 6} = \frac{1 \pm 7}{12} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{1 + 7}{12} = \frac{8}{12} = \frac{2}{3} \][/tex]
[tex]\[ x_2 = \frac{1 - 7}{12} = \frac{-6}{12} = -0.5 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = \frac{2}{3}\)[/tex] (o [tex]\(0.666666\)[/tex]) y [tex]\(x_2 = -0.5\)[/tex].
Por lo tanto, las soluciones a las ecuaciones cuadráticas son:
a. [tex]\(x_1 = 5\)[/tex], [tex]\(x_2 = -0.3333333\)[/tex]
b. [tex]\(x_1 = -0.5\)[/tex], [tex]\(x_2 = -4\)[/tex]
c. [tex]\(x_1 = 1.5\)[/tex], [tex]\(x_2 = -0.2\)[/tex]
d. [tex]\(x_1 = 0.666666\)[/tex], [tex]\(x_2 = -0.5\)[/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.