IDNLearn.com offers a unique blend of expert answers and community insights. Join our community to receive prompt, thorough responses from knowledgeable experts.
Sagot :
Para resolver las ecuaciones cuadráticas de la forma [tex]\(ax^2 + bx + c = 0\)[/tex] utilizando la fórmula general, seguiremos los siguientes pasos:
La fórmula general para resolver una ecuación cuadrática es:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Donde [tex]\(a\)[/tex], [tex]\(b\)[/tex] y [tex]\(c\)[/tex] son los coeficientes de la ecuación cuadrática [tex]\(ax^2 + bx + c = 0\)[/tex].
### a. [tex]\(3x^2 - 14x - 5 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 3\)[/tex], [tex]\(b = -14\)[/tex], [tex]\(c = -5\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-14)^2 - 4 \cdot 3 \cdot (-5) = 196 + 60 = 256 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-14) \pm \sqrt{256}}{2 \cdot 3} = \frac{14 \pm 16}{6} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{14 + 16}{6} = \frac{30}{6} = 5 \][/tex]
[tex]\[ x_2 = \frac{14 - 16}{6} = \frac{-2}{6} = -\frac{1}{3} \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 5\)[/tex] y [tex]\(x_2 = -\frac{1}{3}\)[/tex].
### b. [tex]\(2x^2 + 9x + 4 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 2\)[/tex], [tex]\(b = 9\)[/tex], [tex]\(c = 4\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 9^2 - 4 \cdot 2 \cdot 4 = 81 - 32 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-9 \pm \sqrt{49}}{2 \cdot 2} = \frac{-9 \pm 7}{4} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{-9 + 7}{4} = \frac{-2}{4} = -0.5 \][/tex]
[tex]\[ x_2 = \frac{-9 - 7}{4} = \frac{-16}{4} = -4 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = -0.5\)[/tex] y [tex]\(x_2 = -4\)[/tex].
### c. [tex]\(10x^2 - 13x - 3 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 10\)[/tex], [tex]\(b = -13\)[/tex], [tex]\(c = -3\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-13)^2 - 4 \cdot 10 \cdot (-3) = 169 + 120 = 289 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-13) \pm \sqrt{289}}{2 \cdot 10} = \frac{13 \pm 17}{20} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{13 + 17}{20} = \frac{30}{20} = 1.5 \][/tex]
[tex]\[ x_2 = \frac{13 - 17}{20} = \frac{-4}{20} = -0.2 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 1.5\)[/tex] y [tex]\(x_2 = -0.2\)[/tex].
### d. [tex]\(6x^2 - x - 2 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 6\)[/tex], [tex]\(b = -1\)[/tex], [tex]\(c = -2\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-1)^2 - 4 \cdot 6 \cdot (-2) = 1 + 48 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-1) \pm \sqrt{49}}{2 \cdot 6} = \frac{1 \pm 7}{12} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{1 + 7}{12} = \frac{8}{12} = \frac{2}{3} \][/tex]
[tex]\[ x_2 = \frac{1 - 7}{12} = \frac{-6}{12} = -0.5 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = \frac{2}{3}\)[/tex] (o [tex]\(0.666666\)[/tex]) y [tex]\(x_2 = -0.5\)[/tex].
Por lo tanto, las soluciones a las ecuaciones cuadráticas son:
a. [tex]\(x_1 = 5\)[/tex], [tex]\(x_2 = -0.3333333\)[/tex]
b. [tex]\(x_1 = -0.5\)[/tex], [tex]\(x_2 = -4\)[/tex]
c. [tex]\(x_1 = 1.5\)[/tex], [tex]\(x_2 = -0.2\)[/tex]
d. [tex]\(x_1 = 0.666666\)[/tex], [tex]\(x_2 = -0.5\)[/tex]
La fórmula general para resolver una ecuación cuadrática es:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Donde [tex]\(a\)[/tex], [tex]\(b\)[/tex] y [tex]\(c\)[/tex] son los coeficientes de la ecuación cuadrática [tex]\(ax^2 + bx + c = 0\)[/tex].
### a. [tex]\(3x^2 - 14x - 5 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 3\)[/tex], [tex]\(b = -14\)[/tex], [tex]\(c = -5\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-14)^2 - 4 \cdot 3 \cdot (-5) = 196 + 60 = 256 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-14) \pm \sqrt{256}}{2 \cdot 3} = \frac{14 \pm 16}{6} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{14 + 16}{6} = \frac{30}{6} = 5 \][/tex]
[tex]\[ x_2 = \frac{14 - 16}{6} = \frac{-2}{6} = -\frac{1}{3} \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 5\)[/tex] y [tex]\(x_2 = -\frac{1}{3}\)[/tex].
### b. [tex]\(2x^2 + 9x + 4 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 2\)[/tex], [tex]\(b = 9\)[/tex], [tex]\(c = 4\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 9^2 - 4 \cdot 2 \cdot 4 = 81 - 32 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-9 \pm \sqrt{49}}{2 \cdot 2} = \frac{-9 \pm 7}{4} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{-9 + 7}{4} = \frac{-2}{4} = -0.5 \][/tex]
[tex]\[ x_2 = \frac{-9 - 7}{4} = \frac{-16}{4} = -4 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = -0.5\)[/tex] y [tex]\(x_2 = -4\)[/tex].
### c. [tex]\(10x^2 - 13x - 3 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 10\)[/tex], [tex]\(b = -13\)[/tex], [tex]\(c = -3\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-13)^2 - 4 \cdot 10 \cdot (-3) = 169 + 120 = 289 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-13) \pm \sqrt{289}}{2 \cdot 10} = \frac{13 \pm 17}{20} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{13 + 17}{20} = \frac{30}{20} = 1.5 \][/tex]
[tex]\[ x_2 = \frac{13 - 17}{20} = \frac{-4}{20} = -0.2 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = 1.5\)[/tex] y [tex]\(x_2 = -0.2\)[/tex].
### d. [tex]\(6x^2 - x - 2 = 0\)[/tex]
Paso 1: Identificar los coeficientes: [tex]\(a = 6\)[/tex], [tex]\(b = -1\)[/tex], [tex]\(c = -2\)[/tex].
Paso 2: Calcular el discriminante ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = (-1)^2 - 4 \cdot 6 \cdot (-2) = 1 + 48 = 49 \][/tex]
Paso 3: Sustituir en la fórmula general:
[tex]\[ x = \frac{-(-1) \pm \sqrt{49}}{2 \cdot 6} = \frac{1 \pm 7}{12} \][/tex]
Paso 4: Resolver para los dos valores de [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{1 + 7}{12} = \frac{8}{12} = \frac{2}{3} \][/tex]
[tex]\[ x_2 = \frac{1 - 7}{12} = \frac{-6}{12} = -0.5 \][/tex]
Entonces, las soluciones son [tex]\(x_1 = \frac{2}{3}\)[/tex] (o [tex]\(0.666666\)[/tex]) y [tex]\(x_2 = -0.5\)[/tex].
Por lo tanto, las soluciones a las ecuaciones cuadráticas son:
a. [tex]\(x_1 = 5\)[/tex], [tex]\(x_2 = -0.3333333\)[/tex]
b. [tex]\(x_1 = -0.5\)[/tex], [tex]\(x_2 = -4\)[/tex]
c. [tex]\(x_1 = 1.5\)[/tex], [tex]\(x_2 = -0.2\)[/tex]
d. [tex]\(x_1 = 0.666666\)[/tex], [tex]\(x_2 = -0.5\)[/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.