Explore IDNLearn.com's extensive Q&A database and find the answers you need. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.
Sagot :
To solve the differential equation [tex]\(\frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 4 \sin 2 t\)[/tex] using the method of undetermined coefficients, we'll follow these steps:
1. Solve the homogeneous equation:
[tex]\(\frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 0\)[/tex]
2. Find the particular solution of the non-homogeneous equation:
[tex]\(\frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 4 \sin 2 t\)[/tex]
3. Combine the solutions to form the general solution.
### Step 1: Solve the Homogeneous Equation
First, solve the homogeneous equation:
[tex]\[ \frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 0 \][/tex]
This can be written as:
[tex]\[ y'' + 9y' = 0 \][/tex]
To solve this, we'll assume a solution of the form [tex]\(y = e^{rt}\)[/tex]. Substituting [tex]\(y = e^{rt}\)[/tex] into the differential equation, we get:
[tex]\[ r^2 e^{rt} + 9r e^{rt} = 0 \][/tex]
Factor out [tex]\(e^{rt}\)[/tex]:
[tex]\[ e^{rt} (r^2 + 9r) = 0 \][/tex]
Since [tex]\(e^{rt} \neq 0\)[/tex], we have:
[tex]\[ r^2 + 9r = 0 \][/tex]
Solve for [tex]\(r\)[/tex]:
[tex]\[ r(r + 9) = 0 \][/tex]
This gives us two roots:
[tex]\[ r = 0 \quad \text{and} \quad r = -9 \][/tex]
So the general solution to the homogeneous equation is:
[tex]\[ y_h(t) = C_1 + C_2 e^{-9t} \][/tex]
### Step 2: Find the Particular Solution
Next, we need a particular solution to the non-homogeneous equation:
[tex]\[ \frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 4 \sin 2 t \][/tex]
Since the right-hand side is [tex]\(4 \sin 2 t\)[/tex], which is a sine function, we will guess a particular solution of the form:
[tex]\[ y_p(t) = A \cos 2t + B \sin 2t \][/tex]
Now, we need the first and second derivatives of [tex]\(y_p(t)\)[/tex]:
[tex]\[ y_p'(t) = -2A \sin 2t + 2B \cos 2t \][/tex]
[tex]\[ y_p''(t) = -4A \cos 2t - 4B \sin 2t \][/tex]
Substitute [tex]\(y_p(t)\)[/tex], [tex]\(y_p'(t)\)[/tex], and [tex]\(y_p''(t)\)[/tex] into the original differential equation:
[tex]\[ (-4A \cos 2t - 4B \sin 2t) + 9(-2A \sin 2t + 2B \cos 2t) = 4 \sin 2t \][/tex]
Simplify and collect like terms:
[tex]\[ -4A \cos 2t - 4B \sin 2t - 18A \sin 2t + 18B \cos 2t = 4 \sin 2t \][/tex]
[tex]\[ (-4A + 18B) \cos 2t + (-4B - 18A) \sin 2t = 4 \sin 2t \][/tex]
To satisfy this equation for all [tex]\(t\)[/tex], the coefficients of [tex]\(\cos 2t\)[/tex] and [tex]\(\sin 2t\)[/tex] must be equal on both sides:
[tex]\[ -4A + 18B = 0 \][/tex]
[tex]\[ -4B - 18A = 4 \][/tex]
Solve these simultaneous equations:
From the first equation:
[tex]\[ 18B = 4A \][/tex]
[tex]\[ B = \frac{2A}{9} \][/tex]
Substitute [tex]\(B\)[/tex] into the second equation:
[tex]\[ -4\left(\frac{2A}{9}\right) - 18A = 4 \][/tex]
[tex]\[ -\frac{8A}{9} - 18A = 4 \][/tex]
[tex]\[ -\frac{8A + 162A}{9} = 4 \][/tex]
[tex]\[ -\frac{170A}{9} = 4 \][/tex]
[tex]\[ -170A = 36 \][/tex]
[tex]\[ A = -\frac{36}{170} = -\frac{18}{85} \][/tex]
Then, substitute [tex]\(A\)[/tex] back to find [tex]\(B\)[/tex]:
[tex]\[ B = \frac{2A}{9} = \frac{2 \left( -\frac{18}{85} \right)}{9} = -\frac{36}{85 \cdot 9} = -\frac{36}{765} = -\frac{4}{85} \][/tex]
So the particular solution is:
[tex]\[ y_p(t) = -\frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t \][/tex]
### Step 3: General Solution
Combine the homogeneous solution and the particular solution:
[tex]\[ y(t) = y_h(t) + y_p(t) = C_1 + C_2 e^{-9t} - \frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t \][/tex]
Thus, the general solution to the differential equation is:
[tex]\[ \boxed{y(t) = C_1 + C_2 e^{-9t} - \frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t} \][/tex]
1. Solve the homogeneous equation:
[tex]\(\frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 0\)[/tex]
2. Find the particular solution of the non-homogeneous equation:
[tex]\(\frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 4 \sin 2 t\)[/tex]
3. Combine the solutions to form the general solution.
### Step 1: Solve the Homogeneous Equation
First, solve the homogeneous equation:
[tex]\[ \frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 0 \][/tex]
This can be written as:
[tex]\[ y'' + 9y' = 0 \][/tex]
To solve this, we'll assume a solution of the form [tex]\(y = e^{rt}\)[/tex]. Substituting [tex]\(y = e^{rt}\)[/tex] into the differential equation, we get:
[tex]\[ r^2 e^{rt} + 9r e^{rt} = 0 \][/tex]
Factor out [tex]\(e^{rt}\)[/tex]:
[tex]\[ e^{rt} (r^2 + 9r) = 0 \][/tex]
Since [tex]\(e^{rt} \neq 0\)[/tex], we have:
[tex]\[ r^2 + 9r = 0 \][/tex]
Solve for [tex]\(r\)[/tex]:
[tex]\[ r(r + 9) = 0 \][/tex]
This gives us two roots:
[tex]\[ r = 0 \quad \text{and} \quad r = -9 \][/tex]
So the general solution to the homogeneous equation is:
[tex]\[ y_h(t) = C_1 + C_2 e^{-9t} \][/tex]
### Step 2: Find the Particular Solution
Next, we need a particular solution to the non-homogeneous equation:
[tex]\[ \frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 4 \sin 2 t \][/tex]
Since the right-hand side is [tex]\(4 \sin 2 t\)[/tex], which is a sine function, we will guess a particular solution of the form:
[tex]\[ y_p(t) = A \cos 2t + B \sin 2t \][/tex]
Now, we need the first and second derivatives of [tex]\(y_p(t)\)[/tex]:
[tex]\[ y_p'(t) = -2A \sin 2t + 2B \cos 2t \][/tex]
[tex]\[ y_p''(t) = -4A \cos 2t - 4B \sin 2t \][/tex]
Substitute [tex]\(y_p(t)\)[/tex], [tex]\(y_p'(t)\)[/tex], and [tex]\(y_p''(t)\)[/tex] into the original differential equation:
[tex]\[ (-4A \cos 2t - 4B \sin 2t) + 9(-2A \sin 2t + 2B \cos 2t) = 4 \sin 2t \][/tex]
Simplify and collect like terms:
[tex]\[ -4A \cos 2t - 4B \sin 2t - 18A \sin 2t + 18B \cos 2t = 4 \sin 2t \][/tex]
[tex]\[ (-4A + 18B) \cos 2t + (-4B - 18A) \sin 2t = 4 \sin 2t \][/tex]
To satisfy this equation for all [tex]\(t\)[/tex], the coefficients of [tex]\(\cos 2t\)[/tex] and [tex]\(\sin 2t\)[/tex] must be equal on both sides:
[tex]\[ -4A + 18B = 0 \][/tex]
[tex]\[ -4B - 18A = 4 \][/tex]
Solve these simultaneous equations:
From the first equation:
[tex]\[ 18B = 4A \][/tex]
[tex]\[ B = \frac{2A}{9} \][/tex]
Substitute [tex]\(B\)[/tex] into the second equation:
[tex]\[ -4\left(\frac{2A}{9}\right) - 18A = 4 \][/tex]
[tex]\[ -\frac{8A}{9} - 18A = 4 \][/tex]
[tex]\[ -\frac{8A + 162A}{9} = 4 \][/tex]
[tex]\[ -\frac{170A}{9} = 4 \][/tex]
[tex]\[ -170A = 36 \][/tex]
[tex]\[ A = -\frac{36}{170} = -\frac{18}{85} \][/tex]
Then, substitute [tex]\(A\)[/tex] back to find [tex]\(B\)[/tex]:
[tex]\[ B = \frac{2A}{9} = \frac{2 \left( -\frac{18}{85} \right)}{9} = -\frac{36}{85 \cdot 9} = -\frac{36}{765} = -\frac{4}{85} \][/tex]
So the particular solution is:
[tex]\[ y_p(t) = -\frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t \][/tex]
### Step 3: General Solution
Combine the homogeneous solution and the particular solution:
[tex]\[ y(t) = y_h(t) + y_p(t) = C_1 + C_2 e^{-9t} - \frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t \][/tex]
Thus, the general solution to the differential equation is:
[tex]\[ \boxed{y(t) = C_1 + C_2 e^{-9t} - \frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.