IDNLearn.com connects you with a community of experts ready to answer your questions. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.
Sagot :
To solve the differential equation [tex]\(\frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 4 \sin 2 t\)[/tex] using the method of undetermined coefficients, we'll follow these steps:
1. Solve the homogeneous equation:
[tex]\(\frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 0\)[/tex]
2. Find the particular solution of the non-homogeneous equation:
[tex]\(\frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 4 \sin 2 t\)[/tex]
3. Combine the solutions to form the general solution.
### Step 1: Solve the Homogeneous Equation
First, solve the homogeneous equation:
[tex]\[ \frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 0 \][/tex]
This can be written as:
[tex]\[ y'' + 9y' = 0 \][/tex]
To solve this, we'll assume a solution of the form [tex]\(y = e^{rt}\)[/tex]. Substituting [tex]\(y = e^{rt}\)[/tex] into the differential equation, we get:
[tex]\[ r^2 e^{rt} + 9r e^{rt} = 0 \][/tex]
Factor out [tex]\(e^{rt}\)[/tex]:
[tex]\[ e^{rt} (r^2 + 9r) = 0 \][/tex]
Since [tex]\(e^{rt} \neq 0\)[/tex], we have:
[tex]\[ r^2 + 9r = 0 \][/tex]
Solve for [tex]\(r\)[/tex]:
[tex]\[ r(r + 9) = 0 \][/tex]
This gives us two roots:
[tex]\[ r = 0 \quad \text{and} \quad r = -9 \][/tex]
So the general solution to the homogeneous equation is:
[tex]\[ y_h(t) = C_1 + C_2 e^{-9t} \][/tex]
### Step 2: Find the Particular Solution
Next, we need a particular solution to the non-homogeneous equation:
[tex]\[ \frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 4 \sin 2 t \][/tex]
Since the right-hand side is [tex]\(4 \sin 2 t\)[/tex], which is a sine function, we will guess a particular solution of the form:
[tex]\[ y_p(t) = A \cos 2t + B \sin 2t \][/tex]
Now, we need the first and second derivatives of [tex]\(y_p(t)\)[/tex]:
[tex]\[ y_p'(t) = -2A \sin 2t + 2B \cos 2t \][/tex]
[tex]\[ y_p''(t) = -4A \cos 2t - 4B \sin 2t \][/tex]
Substitute [tex]\(y_p(t)\)[/tex], [tex]\(y_p'(t)\)[/tex], and [tex]\(y_p''(t)\)[/tex] into the original differential equation:
[tex]\[ (-4A \cos 2t - 4B \sin 2t) + 9(-2A \sin 2t + 2B \cos 2t) = 4 \sin 2t \][/tex]
Simplify and collect like terms:
[tex]\[ -4A \cos 2t - 4B \sin 2t - 18A \sin 2t + 18B \cos 2t = 4 \sin 2t \][/tex]
[tex]\[ (-4A + 18B) \cos 2t + (-4B - 18A) \sin 2t = 4 \sin 2t \][/tex]
To satisfy this equation for all [tex]\(t\)[/tex], the coefficients of [tex]\(\cos 2t\)[/tex] and [tex]\(\sin 2t\)[/tex] must be equal on both sides:
[tex]\[ -4A + 18B = 0 \][/tex]
[tex]\[ -4B - 18A = 4 \][/tex]
Solve these simultaneous equations:
From the first equation:
[tex]\[ 18B = 4A \][/tex]
[tex]\[ B = \frac{2A}{9} \][/tex]
Substitute [tex]\(B\)[/tex] into the second equation:
[tex]\[ -4\left(\frac{2A}{9}\right) - 18A = 4 \][/tex]
[tex]\[ -\frac{8A}{9} - 18A = 4 \][/tex]
[tex]\[ -\frac{8A + 162A}{9} = 4 \][/tex]
[tex]\[ -\frac{170A}{9} = 4 \][/tex]
[tex]\[ -170A = 36 \][/tex]
[tex]\[ A = -\frac{36}{170} = -\frac{18}{85} \][/tex]
Then, substitute [tex]\(A\)[/tex] back to find [tex]\(B\)[/tex]:
[tex]\[ B = \frac{2A}{9} = \frac{2 \left( -\frac{18}{85} \right)}{9} = -\frac{36}{85 \cdot 9} = -\frac{36}{765} = -\frac{4}{85} \][/tex]
So the particular solution is:
[tex]\[ y_p(t) = -\frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t \][/tex]
### Step 3: General Solution
Combine the homogeneous solution and the particular solution:
[tex]\[ y(t) = y_h(t) + y_p(t) = C_1 + C_2 e^{-9t} - \frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t \][/tex]
Thus, the general solution to the differential equation is:
[tex]\[ \boxed{y(t) = C_1 + C_2 e^{-9t} - \frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t} \][/tex]
1. Solve the homogeneous equation:
[tex]\(\frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 0\)[/tex]
2. Find the particular solution of the non-homogeneous equation:
[tex]\(\frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 4 \sin 2 t\)[/tex]
3. Combine the solutions to form the general solution.
### Step 1: Solve the Homogeneous Equation
First, solve the homogeneous equation:
[tex]\[ \frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 0 \][/tex]
This can be written as:
[tex]\[ y'' + 9y' = 0 \][/tex]
To solve this, we'll assume a solution of the form [tex]\(y = e^{rt}\)[/tex]. Substituting [tex]\(y = e^{rt}\)[/tex] into the differential equation, we get:
[tex]\[ r^2 e^{rt} + 9r e^{rt} = 0 \][/tex]
Factor out [tex]\(e^{rt}\)[/tex]:
[tex]\[ e^{rt} (r^2 + 9r) = 0 \][/tex]
Since [tex]\(e^{rt} \neq 0\)[/tex], we have:
[tex]\[ r^2 + 9r = 0 \][/tex]
Solve for [tex]\(r\)[/tex]:
[tex]\[ r(r + 9) = 0 \][/tex]
This gives us two roots:
[tex]\[ r = 0 \quad \text{and} \quad r = -9 \][/tex]
So the general solution to the homogeneous equation is:
[tex]\[ y_h(t) = C_1 + C_2 e^{-9t} \][/tex]
### Step 2: Find the Particular Solution
Next, we need a particular solution to the non-homogeneous equation:
[tex]\[ \frac{d^2 y}{d t^2} + 9 \frac{d y}{d t} = 4 \sin 2 t \][/tex]
Since the right-hand side is [tex]\(4 \sin 2 t\)[/tex], which is a sine function, we will guess a particular solution of the form:
[tex]\[ y_p(t) = A \cos 2t + B \sin 2t \][/tex]
Now, we need the first and second derivatives of [tex]\(y_p(t)\)[/tex]:
[tex]\[ y_p'(t) = -2A \sin 2t + 2B \cos 2t \][/tex]
[tex]\[ y_p''(t) = -4A \cos 2t - 4B \sin 2t \][/tex]
Substitute [tex]\(y_p(t)\)[/tex], [tex]\(y_p'(t)\)[/tex], and [tex]\(y_p''(t)\)[/tex] into the original differential equation:
[tex]\[ (-4A \cos 2t - 4B \sin 2t) + 9(-2A \sin 2t + 2B \cos 2t) = 4 \sin 2t \][/tex]
Simplify and collect like terms:
[tex]\[ -4A \cos 2t - 4B \sin 2t - 18A \sin 2t + 18B \cos 2t = 4 \sin 2t \][/tex]
[tex]\[ (-4A + 18B) \cos 2t + (-4B - 18A) \sin 2t = 4 \sin 2t \][/tex]
To satisfy this equation for all [tex]\(t\)[/tex], the coefficients of [tex]\(\cos 2t\)[/tex] and [tex]\(\sin 2t\)[/tex] must be equal on both sides:
[tex]\[ -4A + 18B = 0 \][/tex]
[tex]\[ -4B - 18A = 4 \][/tex]
Solve these simultaneous equations:
From the first equation:
[tex]\[ 18B = 4A \][/tex]
[tex]\[ B = \frac{2A}{9} \][/tex]
Substitute [tex]\(B\)[/tex] into the second equation:
[tex]\[ -4\left(\frac{2A}{9}\right) - 18A = 4 \][/tex]
[tex]\[ -\frac{8A}{9} - 18A = 4 \][/tex]
[tex]\[ -\frac{8A + 162A}{9} = 4 \][/tex]
[tex]\[ -\frac{170A}{9} = 4 \][/tex]
[tex]\[ -170A = 36 \][/tex]
[tex]\[ A = -\frac{36}{170} = -\frac{18}{85} \][/tex]
Then, substitute [tex]\(A\)[/tex] back to find [tex]\(B\)[/tex]:
[tex]\[ B = \frac{2A}{9} = \frac{2 \left( -\frac{18}{85} \right)}{9} = -\frac{36}{85 \cdot 9} = -\frac{36}{765} = -\frac{4}{85} \][/tex]
So the particular solution is:
[tex]\[ y_p(t) = -\frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t \][/tex]
### Step 3: General Solution
Combine the homogeneous solution and the particular solution:
[tex]\[ y(t) = y_h(t) + y_p(t) = C_1 + C_2 e^{-9t} - \frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t \][/tex]
Thus, the general solution to the differential equation is:
[tex]\[ \boxed{y(t) = C_1 + C_2 e^{-9t} - \frac{18}{85} \cos 2t - \frac{4}{85} \sin 2t} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.