Explore a diverse range of topics and get answers from knowledgeable individuals on IDNLearn.com. Our experts provide timely and accurate responses to help you navigate any topic or issue with confidence.
Sagot :
Sure, let's solve this step-by-step.
Given:
[tex]\[ \sin \alpha = \frac{21}{29}, \quad \cos \beta = \frac{-9}{41} \][/tex]
First, we need to find the missing trigonometric values for [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex].
### 1. Finding [tex]\(\cos \alpha\)[/tex]
Using the Pythagorean identity:
[tex]\[ \sin^2 \alpha + \cos^2 \alpha = 1 \][/tex]
Therefore,
[tex]\[ \left(\frac{21}{29}\right)^2 + \cos^2 \alpha = 1 \][/tex]
[tex]\[ \frac{441}{841} + \cos^2 \alpha = 1 \][/tex]
[tex]\[ \cos^2 \alpha = 1 - \frac{441}{841} \][/tex]
[tex]\[ \cos^2 \alpha = \frac{841 - 441}{841} \][/tex]
[tex]\[ \cos^2 \alpha = \frac{400}{841} \][/tex]
[tex]\[ \cos \alpha = \sqrt{\frac{400}{841}} \][/tex]
[tex]\[ \cos \alpha = \frac{20}{29} \][/tex]
Since [tex]\(\alpha\)[/tex] is in the first quadrant, [tex]\(\cos \alpha\)[/tex] is positive:
[tex]\[ \cos \alpha = \frac{20}{29} \][/tex]
### 2. Finding [tex]\(\sin \beta\)[/tex]
Using the Pythagorean identity:
[tex]\[ \cos^2 \beta + \sin^2 \beta = 1 \][/tex]
Therefore,
[tex]\[ \left(\frac{-9}{41}\right)^2 + \sin^2 \beta = 1 \][/tex]
[tex]\[ \frac{81}{1681} + \sin^2 \beta = 1 \][/tex]
[tex]\[ \sin^2 \beta = 1 - \frac{81}{1681} \][/tex]
[tex]\[ \sin^2 \beta = \frac{1681 - 81}{1681} \][/tex]
[tex]\[ \sin^2 \beta = \frac{1600}{1681} \][/tex]
[tex]\[ \sin \beta = \sqrt{\frac{1600}{1681}} \][/tex]
[tex]\[ \sin \beta = \frac{40}{41} \][/tex]
Since [tex]\(\beta\)[/tex] is in the first quadrant, [tex]\(\sin \beta\)[/tex] is positive:
[tex]\[ \sin \beta = \frac{40}{41} \][/tex]
### a) [tex]\( \sin (\alpha + \beta) \)[/tex]
Using the angle addition formula for sine:
[tex]\[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \][/tex]
Substitute the known values:
[tex]\[ \sin (\alpha + \beta) = \frac{21}{29} \cdot \frac{-9}{41} + \frac{20}{29} \cdot \frac{40}{41} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{21 \cdot -9}{29 \cdot 41} + \frac{20 \cdot 40}{29 \cdot 41} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{-189}{1189} + \frac{800}{1189} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{-189 + 800}{1189} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{611}{1189} \][/tex]
### b) [tex]\( \cos (\alpha + \beta) \)[/tex]
Using the angle addition formula for cosine:
[tex]\[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \][/tex]
Substitute the known values:
[tex]\[ \cos (\alpha + \beta) = \frac{20}{29} \cdot \frac{-9}{41} - \frac{21}{29} \cdot \frac{40}{41} \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{20 \cdot -9}{29 \cdot 41} - \frac{21 \cdot 40}{29 \cdot 41} \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-180}{1189} - \frac{840}{1189} \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-1020}{1189} \][/tex]
### c) [tex]\( \tan (\alpha - \beta) \)[/tex]
First, we need to find [tex]\(\tan \alpha\)[/tex] and [tex]\(\tan \beta\)[/tex]:
[tex]\[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{21}{29}}{\frac{20}{29}} = \frac{21}{20} \][/tex]
[tex]\[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{40}{41}}{\frac{-9}{41}} = -\frac{40}{9} \][/tex]
Using the angle subtraction formula for tangent:
[tex]\[ \tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} \][/tex]
Substitute the known values:
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{21}{20} - \left( -\frac{40}{9} \right)}{1 + \left( \frac{21}{20} \cdot -\frac{40}{9} \right)} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{21}{20} + \frac{40}{9}}{1 - \frac{21 \cdot 40}{20 \cdot 9}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{21 \cdot 9 + 40 \cdot 20}{20 \cdot 9}}{1 - \frac{21 \cdot 40}{20 \cdot 9}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{189 + 800}{180}}{1 - \frac{840}{180}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{989}{180}}{1 - \frac{42}{9}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{989}{180}}{1 - \frac{14}{3}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{989}{180}}{\frac{-11}{3}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{989}{180} \cdot \frac{-3}{11} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{989 \cdot -3}{180 \cdot 11} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{-2967}{1980} \][/tex]
[tex]\[ \tan (\alpha - \beta) = -\frac{2967}{1980} \][/tex]
[tex]\[ \tan (\alpha - \beta) = -\frac{989}{660} \][/tex]
Thus, the answers are:
a) [tex]\(\sin (\alpha + \beta) = \frac{611}{1189}\)[/tex]
b) [tex]\(\cos (\alpha + \beta) = \frac{-1020}{1189}\)[/tex]
c) [tex]\(\tan (\alpha - \beta) = -\frac{989}{660}\)[/tex]
Given:
[tex]\[ \sin \alpha = \frac{21}{29}, \quad \cos \beta = \frac{-9}{41} \][/tex]
First, we need to find the missing trigonometric values for [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex].
### 1. Finding [tex]\(\cos \alpha\)[/tex]
Using the Pythagorean identity:
[tex]\[ \sin^2 \alpha + \cos^2 \alpha = 1 \][/tex]
Therefore,
[tex]\[ \left(\frac{21}{29}\right)^2 + \cos^2 \alpha = 1 \][/tex]
[tex]\[ \frac{441}{841} + \cos^2 \alpha = 1 \][/tex]
[tex]\[ \cos^2 \alpha = 1 - \frac{441}{841} \][/tex]
[tex]\[ \cos^2 \alpha = \frac{841 - 441}{841} \][/tex]
[tex]\[ \cos^2 \alpha = \frac{400}{841} \][/tex]
[tex]\[ \cos \alpha = \sqrt{\frac{400}{841}} \][/tex]
[tex]\[ \cos \alpha = \frac{20}{29} \][/tex]
Since [tex]\(\alpha\)[/tex] is in the first quadrant, [tex]\(\cos \alpha\)[/tex] is positive:
[tex]\[ \cos \alpha = \frac{20}{29} \][/tex]
### 2. Finding [tex]\(\sin \beta\)[/tex]
Using the Pythagorean identity:
[tex]\[ \cos^2 \beta + \sin^2 \beta = 1 \][/tex]
Therefore,
[tex]\[ \left(\frac{-9}{41}\right)^2 + \sin^2 \beta = 1 \][/tex]
[tex]\[ \frac{81}{1681} + \sin^2 \beta = 1 \][/tex]
[tex]\[ \sin^2 \beta = 1 - \frac{81}{1681} \][/tex]
[tex]\[ \sin^2 \beta = \frac{1681 - 81}{1681} \][/tex]
[tex]\[ \sin^2 \beta = \frac{1600}{1681} \][/tex]
[tex]\[ \sin \beta = \sqrt{\frac{1600}{1681}} \][/tex]
[tex]\[ \sin \beta = \frac{40}{41} \][/tex]
Since [tex]\(\beta\)[/tex] is in the first quadrant, [tex]\(\sin \beta\)[/tex] is positive:
[tex]\[ \sin \beta = \frac{40}{41} \][/tex]
### a) [tex]\( \sin (\alpha + \beta) \)[/tex]
Using the angle addition formula for sine:
[tex]\[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \][/tex]
Substitute the known values:
[tex]\[ \sin (\alpha + \beta) = \frac{21}{29} \cdot \frac{-9}{41} + \frac{20}{29} \cdot \frac{40}{41} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{21 \cdot -9}{29 \cdot 41} + \frac{20 \cdot 40}{29 \cdot 41} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{-189}{1189} + \frac{800}{1189} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{-189 + 800}{1189} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{611}{1189} \][/tex]
### b) [tex]\( \cos (\alpha + \beta) \)[/tex]
Using the angle addition formula for cosine:
[tex]\[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \][/tex]
Substitute the known values:
[tex]\[ \cos (\alpha + \beta) = \frac{20}{29} \cdot \frac{-9}{41} - \frac{21}{29} \cdot \frac{40}{41} \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{20 \cdot -9}{29 \cdot 41} - \frac{21 \cdot 40}{29 \cdot 41} \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-180}{1189} - \frac{840}{1189} \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-1020}{1189} \][/tex]
### c) [tex]\( \tan (\alpha - \beta) \)[/tex]
First, we need to find [tex]\(\tan \alpha\)[/tex] and [tex]\(\tan \beta\)[/tex]:
[tex]\[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{21}{29}}{\frac{20}{29}} = \frac{21}{20} \][/tex]
[tex]\[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{40}{41}}{\frac{-9}{41}} = -\frac{40}{9} \][/tex]
Using the angle subtraction formula for tangent:
[tex]\[ \tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} \][/tex]
Substitute the known values:
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{21}{20} - \left( -\frac{40}{9} \right)}{1 + \left( \frac{21}{20} \cdot -\frac{40}{9} \right)} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{21}{20} + \frac{40}{9}}{1 - \frac{21 \cdot 40}{20 \cdot 9}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{21 \cdot 9 + 40 \cdot 20}{20 \cdot 9}}{1 - \frac{21 \cdot 40}{20 \cdot 9}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{189 + 800}{180}}{1 - \frac{840}{180}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{989}{180}}{1 - \frac{42}{9}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{989}{180}}{1 - \frac{14}{3}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\frac{989}{180}}{\frac{-11}{3}} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{989}{180} \cdot \frac{-3}{11} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{989 \cdot -3}{180 \cdot 11} \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{-2967}{1980} \][/tex]
[tex]\[ \tan (\alpha - \beta) = -\frac{2967}{1980} \][/tex]
[tex]\[ \tan (\alpha - \beta) = -\frac{989}{660} \][/tex]
Thus, the answers are:
a) [tex]\(\sin (\alpha + \beta) = \frac{611}{1189}\)[/tex]
b) [tex]\(\cos (\alpha + \beta) = \frac{-1020}{1189}\)[/tex]
c) [tex]\(\tan (\alpha - \beta) = -\frac{989}{660}\)[/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.