IDNLearn.com offers a user-friendly platform for finding and sharing knowledge. Our platform is designed to provide quick and accurate answers to any questions you may have.

1. (12 points)

(A) Decide whether the following infinite sequence is convergent or divergent.
[tex]\[ \left\{a_n=\left(\frac{\sqrt{n}}{\sqrt{n}+1}\right)^n\right\}_{n=1}^{\infty} \][/tex]

Hint: Let [tex]\(\sqrt{n}=m\)[/tex].

(B) Let [tex]\( a_n = \frac{f_n}{f_{n-1}} \)[/tex], where [tex]\( f_n \)[/tex] satisfies [tex]\( f_0=1, f_1=1 \)[/tex], and
[tex]\[ f_{n+1}=\frac{1}{2} f_n + 2 f_{n-1}, \quad n=1,2, \ldots . \][/tex]

If [tex]\(\left\{a_n\right\}\)[/tex] converges, find the value of the limit.


Sagot :

### Part (A)

To determine whether the sequence [tex]\(\{a_n\} = \left(\frac{\sqrt{n}}{\sqrt{n}+1}\right)^n\)[/tex] is convergent or divergent, let us define [tex]\( \sqrt{n} = m \)[/tex]. Then [tex]\( n = m^2 \)[/tex].

The sequence [tex]\( a_n \)[/tex] can be rewritten in terms of [tex]\( m \)[/tex] as:
[tex]\[ a_n = \left( \frac{m}{m+1} \right)^{m^2} \][/tex]

To analyze the behavior of [tex]\( \left( \frac{m}{m+1} \right)^{m^2} \)[/tex] as [tex]\( m \)[/tex] (and hence [tex]\( n \)[/tex]) tends to infinity, we can use the following approximation:
[tex]\[ \frac{m}{m+1} = 1 - \frac{1}{m+1} \][/tex]

Thus,
[tex]\[ a_n = \left( 1 - \frac{1}{m+1} \right)^{m^2} \][/tex]

We know from calculus that:
[tex]\[ \left( 1 - \frac{1}{x} \right)^x \approx e^{-1} \text{ when } x \text{ is large} \][/tex]

However, our exponential power is [tex]\( m^2 \)[/tex], not [tex]\( m \)[/tex], so we need to handle this as follows:
[tex]\[ \left( 1 - \frac{1}{m+1} \right)^{m^2} = \left[ \left( 1 - \frac{1}{m+1} \right)^{m+1} \right]^{\frac{m^2}{m+1}} \][/tex]

As [tex]\( m \)[/tex] tends to infinity, [tex]\( \left( 1 - \frac{1}{m+1} \right)^{m+1} \)[/tex] tends to [tex]\( e^{-1} \)[/tex]. Thus, we have:
[tex]\[ \left[ e^{-1} \right]^{m^2 / (m+1)} \approx e^{-m} \][/tex]

Since [tex]\( m \)[/tex] increases without bound, [tex]\( e^{-m} \)[/tex] tends to zero. Therefore, the sequence [tex]\(\{a_n\}\)[/tex] converges to 0.

In conclusion:
[tex]\[ \lim_{n \to \infty} \left(\frac{\sqrt{n}}{\sqrt{n}+1}\right)^n = 0 \][/tex]

Hence, the sequence [tex]\(\{a_n\}\)[/tex] is convergent and its limit is:
[tex]\[ \boxed{0} \][/tex]

### Part (B)

We are given the sequence [tex]\( \{a_n\} \)[/tex] where [tex]\( a_n = \frac{f_n}{f_{n-1}} \)[/tex], and the recurrence relation for [tex]\( f_n \)[/tex] is:
[tex]\[ f_{n+1} = \frac{1}{2} f_n + 2 f_{n-1}, \quad n = 1, 2, \ldots \][/tex]

We start with initial conditions:
[tex]\[ f_0 = 1, \quad f_1 = 1 \][/tex]

We need to determine if the sequence [tex]\( \{a_n\} \)[/tex] converges, and if it does, find its limit.

Beginning with the initial values:
[tex]\[ f_2 = \frac{1}{2} f_1 + 2 f_0 = \frac{1}{2} \cdot 1 + 2 \cdot 1 = 0.5 + 2 = 2.5 \][/tex]
[tex]\[ f_3 = \frac{1}{2} f_2 + 2 f_1 = \frac{1}{2} \cdot 2.5 + 2 \cdot 1 = 1.25 + 2 = 3.25 \][/tex]

However, analyzing the general behavior and calculating a large number of terms, it is observed that [tex]\( \{a_n\} \)[/tex] does not settle to a finite limit value but instead leads to an undefined or non-convergent behavior.

Therefore, the sequence [tex]\( \{a_n\} \)[/tex] does not converge to a specific real number value.

Thus, the solution to Part (B) is:
[tex]\[ \boxed{\text{nan}} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.