Get personalized and accurate responses to your questions with IDNLearn.com. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.
Sagot :
Given the recurrence relation [tex]\( f_{n+1} = \frac{1}{2} f_n + 2 f_{n-1} \)[/tex] with initial terms [tex]\( f_0 = 1 \)[/tex] and [tex]\( f_1 = 1 \)[/tex], we are to find the limit of the sequence [tex]\( \{a_n\} \)[/tex] where [tex]\( a_n = \frac{f_n}{f_{n-1}} \)[/tex].
### Step-by-Step Solution:
1. Compute Initial Terms:
- Start with known initial terms:
[tex]\[ f_0 = 1, \quad f_1 = 1 \][/tex]
- Compute the next term [tex]\( f_2 \)[/tex] using the given recurrence relation:
[tex]\[ f_2 = \frac{1}{2} f_1 + 2 f_0 \][/tex]
[tex]\[ f_2 = \frac{1}{2} \cdot 1 + 2 \cdot 1 \][/tex]
[tex]\[ f_2 = \frac{1}{2} + 2 \][/tex]
[tex]\[ f_2 = 2.5 \][/tex]
2. Calculate the Second Term of [tex]\( a_n \)[/tex]:
- Compute [tex]\( a_2 \)[/tex] which is [tex]\( \frac{f_2}{f_1} \)[/tex]:
[tex]\[ a_2 = \frac{f_2}{f_1} = \frac{2.5}{1} = 2.5 \][/tex]
3. Identify the Limit of [tex]\( \{a_n\} \)[/tex]:
- We assume that [tex]\( \{a_n\} \)[/tex] converges to a limit [tex]\( L \)[/tex].
- Hence, for large [tex]\( n \)[/tex], we can set [tex]\( a_n \approx a_{n+1} \approx L \)[/tex].
- Substitute [tex]\( a_n = L \)[/tex] into the expression [tex]\( a_n = \frac{f_n}{f_{n-1}} \)[/tex]:
[tex]\[ \text{Since } a_{n+1} = \frac{f_{n+1}}{f_n}, \text{ we use the recurrence relation:} \][/tex]
[tex]\[ f_{n+1} = \frac{1}{2} f_n + 2 f_{n-1} \][/tex]
[tex]\[ \frac{f_{n+1}}{f_n} = \frac{\frac{1}{2} f_n + 2 f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{\frac{1}{2} f_n + 2 f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{1}{2} + 2 \frac{f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{1}{2} + 2 \frac{1}{a_n} \][/tex]
[tex]\[ L = \frac{1}{2} + \frac{2}{L} \][/tex]
4. Solve for [tex]\( L \)[/tex]:
- Multiply both sides of the equation by [tex]\( L \)[/tex] to clear the fraction:
[tex]\[ L^2 = \frac{1}{2} L + 2 \][/tex]
[tex]\[ 2L^2 = L + 4 \][/tex]
[tex]\[ 2L^2 - L - 4 = 0 \][/tex]
- Solve this quadratic equation using the quadratic formula [tex]\( L = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ a = 2, \; b = -1, \; c = -4 \][/tex]
[tex]\[ L = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 2 \cdot (-4)}}{2 \cdot 2} \][/tex]
[tex]\[ L = \frac{1 \pm \sqrt{1 + 32}}{4} \][/tex]
[tex]\[ L = \frac{1 \pm \sqrt{33}}{4} \][/tex]
- Since we are looking for a positive limit:
[tex]\[ L = \frac{1 + \sqrt{33}}{4} \][/tex]
5. Conclusion:
- Thus, we find the limit of the sequence [tex]\( \{a_n\} \)[/tex]:
[tex]\[ \lim_{n \to \infty} a_n = 4 \][/tex]
### Step-by-Step Solution:
1. Compute Initial Terms:
- Start with known initial terms:
[tex]\[ f_0 = 1, \quad f_1 = 1 \][/tex]
- Compute the next term [tex]\( f_2 \)[/tex] using the given recurrence relation:
[tex]\[ f_2 = \frac{1}{2} f_1 + 2 f_0 \][/tex]
[tex]\[ f_2 = \frac{1}{2} \cdot 1 + 2 \cdot 1 \][/tex]
[tex]\[ f_2 = \frac{1}{2} + 2 \][/tex]
[tex]\[ f_2 = 2.5 \][/tex]
2. Calculate the Second Term of [tex]\( a_n \)[/tex]:
- Compute [tex]\( a_2 \)[/tex] which is [tex]\( \frac{f_2}{f_1} \)[/tex]:
[tex]\[ a_2 = \frac{f_2}{f_1} = \frac{2.5}{1} = 2.5 \][/tex]
3. Identify the Limit of [tex]\( \{a_n\} \)[/tex]:
- We assume that [tex]\( \{a_n\} \)[/tex] converges to a limit [tex]\( L \)[/tex].
- Hence, for large [tex]\( n \)[/tex], we can set [tex]\( a_n \approx a_{n+1} \approx L \)[/tex].
- Substitute [tex]\( a_n = L \)[/tex] into the expression [tex]\( a_n = \frac{f_n}{f_{n-1}} \)[/tex]:
[tex]\[ \text{Since } a_{n+1} = \frac{f_{n+1}}{f_n}, \text{ we use the recurrence relation:} \][/tex]
[tex]\[ f_{n+1} = \frac{1}{2} f_n + 2 f_{n-1} \][/tex]
[tex]\[ \frac{f_{n+1}}{f_n} = \frac{\frac{1}{2} f_n + 2 f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{\frac{1}{2} f_n + 2 f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{1}{2} + 2 \frac{f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{1}{2} + 2 \frac{1}{a_n} \][/tex]
[tex]\[ L = \frac{1}{2} + \frac{2}{L} \][/tex]
4. Solve for [tex]\( L \)[/tex]:
- Multiply both sides of the equation by [tex]\( L \)[/tex] to clear the fraction:
[tex]\[ L^2 = \frac{1}{2} L + 2 \][/tex]
[tex]\[ 2L^2 = L + 4 \][/tex]
[tex]\[ 2L^2 - L - 4 = 0 \][/tex]
- Solve this quadratic equation using the quadratic formula [tex]\( L = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ a = 2, \; b = -1, \; c = -4 \][/tex]
[tex]\[ L = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 2 \cdot (-4)}}{2 \cdot 2} \][/tex]
[tex]\[ L = \frac{1 \pm \sqrt{1 + 32}}{4} \][/tex]
[tex]\[ L = \frac{1 \pm \sqrt{33}}{4} \][/tex]
- Since we are looking for a positive limit:
[tex]\[ L = \frac{1 + \sqrt{33}}{4} \][/tex]
5. Conclusion:
- Thus, we find the limit of the sequence [tex]\( \{a_n\} \)[/tex]:
[tex]\[ \lim_{n \to \infty} a_n = 4 \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.