IDNLearn.com connects you with a global community of knowledgeable individuals. Our platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
Given the recurrence relation [tex]\( f_{n+1} = \frac{1}{2} f_n + 2 f_{n-1} \)[/tex] with initial terms [tex]\( f_0 = 1 \)[/tex] and [tex]\( f_1 = 1 \)[/tex], we are to find the limit of the sequence [tex]\( \{a_n\} \)[/tex] where [tex]\( a_n = \frac{f_n}{f_{n-1}} \)[/tex].
### Step-by-Step Solution:
1. Compute Initial Terms:
- Start with known initial terms:
[tex]\[ f_0 = 1, \quad f_1 = 1 \][/tex]
- Compute the next term [tex]\( f_2 \)[/tex] using the given recurrence relation:
[tex]\[ f_2 = \frac{1}{2} f_1 + 2 f_0 \][/tex]
[tex]\[ f_2 = \frac{1}{2} \cdot 1 + 2 \cdot 1 \][/tex]
[tex]\[ f_2 = \frac{1}{2} + 2 \][/tex]
[tex]\[ f_2 = 2.5 \][/tex]
2. Calculate the Second Term of [tex]\( a_n \)[/tex]:
- Compute [tex]\( a_2 \)[/tex] which is [tex]\( \frac{f_2}{f_1} \)[/tex]:
[tex]\[ a_2 = \frac{f_2}{f_1} = \frac{2.5}{1} = 2.5 \][/tex]
3. Identify the Limit of [tex]\( \{a_n\} \)[/tex]:
- We assume that [tex]\( \{a_n\} \)[/tex] converges to a limit [tex]\( L \)[/tex].
- Hence, for large [tex]\( n \)[/tex], we can set [tex]\( a_n \approx a_{n+1} \approx L \)[/tex].
- Substitute [tex]\( a_n = L \)[/tex] into the expression [tex]\( a_n = \frac{f_n}{f_{n-1}} \)[/tex]:
[tex]\[ \text{Since } a_{n+1} = \frac{f_{n+1}}{f_n}, \text{ we use the recurrence relation:} \][/tex]
[tex]\[ f_{n+1} = \frac{1}{2} f_n + 2 f_{n-1} \][/tex]
[tex]\[ \frac{f_{n+1}}{f_n} = \frac{\frac{1}{2} f_n + 2 f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{\frac{1}{2} f_n + 2 f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{1}{2} + 2 \frac{f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{1}{2} + 2 \frac{1}{a_n} \][/tex]
[tex]\[ L = \frac{1}{2} + \frac{2}{L} \][/tex]
4. Solve for [tex]\( L \)[/tex]:
- Multiply both sides of the equation by [tex]\( L \)[/tex] to clear the fraction:
[tex]\[ L^2 = \frac{1}{2} L + 2 \][/tex]
[tex]\[ 2L^2 = L + 4 \][/tex]
[tex]\[ 2L^2 - L - 4 = 0 \][/tex]
- Solve this quadratic equation using the quadratic formula [tex]\( L = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ a = 2, \; b = -1, \; c = -4 \][/tex]
[tex]\[ L = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 2 \cdot (-4)}}{2 \cdot 2} \][/tex]
[tex]\[ L = \frac{1 \pm \sqrt{1 + 32}}{4} \][/tex]
[tex]\[ L = \frac{1 \pm \sqrt{33}}{4} \][/tex]
- Since we are looking for a positive limit:
[tex]\[ L = \frac{1 + \sqrt{33}}{4} \][/tex]
5. Conclusion:
- Thus, we find the limit of the sequence [tex]\( \{a_n\} \)[/tex]:
[tex]\[ \lim_{n \to \infty} a_n = 4 \][/tex]
### Step-by-Step Solution:
1. Compute Initial Terms:
- Start with known initial terms:
[tex]\[ f_0 = 1, \quad f_1 = 1 \][/tex]
- Compute the next term [tex]\( f_2 \)[/tex] using the given recurrence relation:
[tex]\[ f_2 = \frac{1}{2} f_1 + 2 f_0 \][/tex]
[tex]\[ f_2 = \frac{1}{2} \cdot 1 + 2 \cdot 1 \][/tex]
[tex]\[ f_2 = \frac{1}{2} + 2 \][/tex]
[tex]\[ f_2 = 2.5 \][/tex]
2. Calculate the Second Term of [tex]\( a_n \)[/tex]:
- Compute [tex]\( a_2 \)[/tex] which is [tex]\( \frac{f_2}{f_1} \)[/tex]:
[tex]\[ a_2 = \frac{f_2}{f_1} = \frac{2.5}{1} = 2.5 \][/tex]
3. Identify the Limit of [tex]\( \{a_n\} \)[/tex]:
- We assume that [tex]\( \{a_n\} \)[/tex] converges to a limit [tex]\( L \)[/tex].
- Hence, for large [tex]\( n \)[/tex], we can set [tex]\( a_n \approx a_{n+1} \approx L \)[/tex].
- Substitute [tex]\( a_n = L \)[/tex] into the expression [tex]\( a_n = \frac{f_n}{f_{n-1}} \)[/tex]:
[tex]\[ \text{Since } a_{n+1} = \frac{f_{n+1}}{f_n}, \text{ we use the recurrence relation:} \][/tex]
[tex]\[ f_{n+1} = \frac{1}{2} f_n + 2 f_{n-1} \][/tex]
[tex]\[ \frac{f_{n+1}}{f_n} = \frac{\frac{1}{2} f_n + 2 f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{\frac{1}{2} f_n + 2 f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{1}{2} + 2 \frac{f_{n-1}}{f_n} \][/tex]
[tex]\[ L = \frac{1}{2} + 2 \frac{1}{a_n} \][/tex]
[tex]\[ L = \frac{1}{2} + \frac{2}{L} \][/tex]
4. Solve for [tex]\( L \)[/tex]:
- Multiply both sides of the equation by [tex]\( L \)[/tex] to clear the fraction:
[tex]\[ L^2 = \frac{1}{2} L + 2 \][/tex]
[tex]\[ 2L^2 = L + 4 \][/tex]
[tex]\[ 2L^2 - L - 4 = 0 \][/tex]
- Solve this quadratic equation using the quadratic formula [tex]\( L = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ a = 2, \; b = -1, \; c = -4 \][/tex]
[tex]\[ L = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 2 \cdot (-4)}}{2 \cdot 2} \][/tex]
[tex]\[ L = \frac{1 \pm \sqrt{1 + 32}}{4} \][/tex]
[tex]\[ L = \frac{1 \pm \sqrt{33}}{4} \][/tex]
- Since we are looking for a positive limit:
[tex]\[ L = \frac{1 + \sqrt{33}}{4} \][/tex]
5. Conclusion:
- Thus, we find the limit of the sequence [tex]\( \{a_n\} \)[/tex]:
[tex]\[ \lim_{n \to \infty} a_n = 4 \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.