Uncover valuable information and solutions with IDNLearn.com's extensive Q&A platform. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.
Sagot :
### Understanding the Value of g
The value of [tex]\( g \)[/tex] is [tex]\( -9.8 \, \text{m/s}^2 \)[/tex]. This constant represents the acceleration due to gravity near the Earth's surface.
1. Acceleration Due to Gravity: The value indicates that any object in free fall near the Earth's surface will accelerate downwards at a rate of [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
2. Direction of Gravitational Force: The negative sign signifies that the force of gravity acts in the direction towards the center of the Earth (downwards).
### Numerical Problems Solved
#### Problem 1: Gravitational Force Between the Sun and the Earth
- Given:
- Mass of the Sun ([tex]\( M_s \)[/tex]): [tex]\( 2 \times 10^{30} \, \text{kg} \)[/tex]
- Mass of the Earth ([tex]\( M_e \)[/tex]): [tex]\( 6 \times 10^{24} \, \text{kg} \)[/tex]
- Distance between them ([tex]\( d \)[/tex]): [tex]\( 1.5 \times 10^8 \, \text{km} \)[/tex] = [tex]\( 1.5 \times 10^{11} \, \text{m} \)[/tex]
- Formula:
[tex]\[ F = \frac{G M_s M_e}{d^2} \][/tex]
- Calculation:
Plugging in the values (with [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]):
[tex]\[ F = \frac{6.67430 \times 10^{-11} \times 2 \times 10^{30} \times 6 \times 10^{24}}{(1.5 \times 10^{11})^2} \][/tex]
This calculates to:
[tex]\[ F \approx 3.559626666666666e^{22} \, \text{N} \][/tex]
#### Problem 2: Mass of an Object from Gravitational Force
- Given:
- Gravitational Force ([tex]\( F \)[/tex]): [tex]\( 1.334 \times 10^{-3} \, \text{N} \)[/tex]
- Mass of one object ([tex]\( m_1 \)[/tex]): [tex]\( 200 \, \text{kg} \)[/tex]
- Distance between objects ([tex]\( d \)[/tex]): [tex]\( 10 \, \text{m} \)[/tex]
- Formula:
[tex]\[ m_2 = \frac{F d^2}{G m_1} \][/tex]
- Calculation:
Plugging in the values (with [tex]\( G = 6.67430 \times 10^{-11} \)[/tex]):
[tex]\[ m_2 = \frac{1.334 \times 10^{-3} \times 10^2}{6.67430 \times 10^{-11} \times 200} \][/tex]
This calculates to:
[tex]\[ m_2 \approx 9993557.37680356 \, \text{kg} \][/tex]
#### Problem 3: Mass of a Person on Earth
- Given:
- Weight of the person ([tex]\( W \)[/tex]): [tex]\( 977 \, \text{N} \)[/tex]
- Mass of the Earth ([tex]\( M_e \)[/tex]): [tex]\( 6 \times 10^{24} \, \text{kg} \)[/tex]
- Radius of the Earth ([tex]\( r \)[/tex]): [tex]\( 6400 \, \text{km} \)[/tex] = [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex]
- Formula:
[tex]\[ W = G \frac{M_e m}{r^2} \][/tex]
Solving for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{W r^2}{G M_e} \][/tex]
- Calculation:
Plugging in the values (with [tex]\( G = 6.67430 \times 10^{-11} \)[/tex]):
[tex]\[ m = \frac{977 \times (6400 \times 10^3)^2}{6.67430 \times 10^{-11} \times 6 \times 10^{24}} \][/tex]
This calculates to:
[tex]\[ m \approx 99.93037971522608 \, \text{kg} \][/tex]
#### Problem 4: Height from the Earth's Surface for Changed Weight
- Given:
- Weight at earth's surface ([tex]\( W_1 \)[/tex]): [tex]\( 300 \, \text{N} \)[/tex]
- Weight at height [tex]\( h \)[/tex] ([tex]\( W_2 \)[/tex]): [tex]\( 200 \, \text{N} \)[/tex]
- Radius of the Earth ([tex]\( r_e \)[/tex]): [tex]\( 6380 \, \text{km} \)[/tex] = [tex]\( 6380 \times 10^3 \, \text{m} \)[/tex]
- Formula:
Combine the weight formulas:
[tex]\[ W_1 = G \frac{M_e m}{r_e^2} \][/tex]
and
[tex]\[ W_2 = G \frac{M_e m}{(r_e + h)^2} \][/tex]
We get:
[tex]\[ \frac{W_2}{W_1} = \frac{r_e^2}{(r_e + h)^2} \][/tex]
Solving for [tex]\( h \)[/tex]:
[tex]\[ \frac{200}{300} = \frac{r_e^2}{(r_e + h)^2} \][/tex]
[tex]\[ \frac{2}{3} = \frac{(6380 \times 10^3)^2}{(6380 \times 10^3 + h)^2} \][/tex]
- Calculation:
Simplifying the equation, we get:
[tex]\[ (r_e + h)^2 = \frac{3}{2} r_e^2 \][/tex]
Solving for [tex]\( h \)[/tex]:
[tex]\[ h = \sqrt{\frac{3}{2} r_e^2} - r_e \][/tex]
This calculates to:
[tex]\[ h \approx 521216582732.1647 \, \text{m} \][/tex]
The value of [tex]\( g \)[/tex] is [tex]\( -9.8 \, \text{m/s}^2 \)[/tex]. This constant represents the acceleration due to gravity near the Earth's surface.
1. Acceleration Due to Gravity: The value indicates that any object in free fall near the Earth's surface will accelerate downwards at a rate of [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
2. Direction of Gravitational Force: The negative sign signifies that the force of gravity acts in the direction towards the center of the Earth (downwards).
### Numerical Problems Solved
#### Problem 1: Gravitational Force Between the Sun and the Earth
- Given:
- Mass of the Sun ([tex]\( M_s \)[/tex]): [tex]\( 2 \times 10^{30} \, \text{kg} \)[/tex]
- Mass of the Earth ([tex]\( M_e \)[/tex]): [tex]\( 6 \times 10^{24} \, \text{kg} \)[/tex]
- Distance between them ([tex]\( d \)[/tex]): [tex]\( 1.5 \times 10^8 \, \text{km} \)[/tex] = [tex]\( 1.5 \times 10^{11} \, \text{m} \)[/tex]
- Formula:
[tex]\[ F = \frac{G M_s M_e}{d^2} \][/tex]
- Calculation:
Plugging in the values (with [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]):
[tex]\[ F = \frac{6.67430 \times 10^{-11} \times 2 \times 10^{30} \times 6 \times 10^{24}}{(1.5 \times 10^{11})^2} \][/tex]
This calculates to:
[tex]\[ F \approx 3.559626666666666e^{22} \, \text{N} \][/tex]
#### Problem 2: Mass of an Object from Gravitational Force
- Given:
- Gravitational Force ([tex]\( F \)[/tex]): [tex]\( 1.334 \times 10^{-3} \, \text{N} \)[/tex]
- Mass of one object ([tex]\( m_1 \)[/tex]): [tex]\( 200 \, \text{kg} \)[/tex]
- Distance between objects ([tex]\( d \)[/tex]): [tex]\( 10 \, \text{m} \)[/tex]
- Formula:
[tex]\[ m_2 = \frac{F d^2}{G m_1} \][/tex]
- Calculation:
Plugging in the values (with [tex]\( G = 6.67430 \times 10^{-11} \)[/tex]):
[tex]\[ m_2 = \frac{1.334 \times 10^{-3} \times 10^2}{6.67430 \times 10^{-11} \times 200} \][/tex]
This calculates to:
[tex]\[ m_2 \approx 9993557.37680356 \, \text{kg} \][/tex]
#### Problem 3: Mass of a Person on Earth
- Given:
- Weight of the person ([tex]\( W \)[/tex]): [tex]\( 977 \, \text{N} \)[/tex]
- Mass of the Earth ([tex]\( M_e \)[/tex]): [tex]\( 6 \times 10^{24} \, \text{kg} \)[/tex]
- Radius of the Earth ([tex]\( r \)[/tex]): [tex]\( 6400 \, \text{km} \)[/tex] = [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex]
- Formula:
[tex]\[ W = G \frac{M_e m}{r^2} \][/tex]
Solving for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{W r^2}{G M_e} \][/tex]
- Calculation:
Plugging in the values (with [tex]\( G = 6.67430 \times 10^{-11} \)[/tex]):
[tex]\[ m = \frac{977 \times (6400 \times 10^3)^2}{6.67430 \times 10^{-11} \times 6 \times 10^{24}} \][/tex]
This calculates to:
[tex]\[ m \approx 99.93037971522608 \, \text{kg} \][/tex]
#### Problem 4: Height from the Earth's Surface for Changed Weight
- Given:
- Weight at earth's surface ([tex]\( W_1 \)[/tex]): [tex]\( 300 \, \text{N} \)[/tex]
- Weight at height [tex]\( h \)[/tex] ([tex]\( W_2 \)[/tex]): [tex]\( 200 \, \text{N} \)[/tex]
- Radius of the Earth ([tex]\( r_e \)[/tex]): [tex]\( 6380 \, \text{km} \)[/tex] = [tex]\( 6380 \times 10^3 \, \text{m} \)[/tex]
- Formula:
Combine the weight formulas:
[tex]\[ W_1 = G \frac{M_e m}{r_e^2} \][/tex]
and
[tex]\[ W_2 = G \frac{M_e m}{(r_e + h)^2} \][/tex]
We get:
[tex]\[ \frac{W_2}{W_1} = \frac{r_e^2}{(r_e + h)^2} \][/tex]
Solving for [tex]\( h \)[/tex]:
[tex]\[ \frac{200}{300} = \frac{r_e^2}{(r_e + h)^2} \][/tex]
[tex]\[ \frac{2}{3} = \frac{(6380 \times 10^3)^2}{(6380 \times 10^3 + h)^2} \][/tex]
- Calculation:
Simplifying the equation, we get:
[tex]\[ (r_e + h)^2 = \frac{3}{2} r_e^2 \][/tex]
Solving for [tex]\( h \)[/tex]:
[tex]\[ h = \sqrt{\frac{3}{2} r_e^2} - r_e \][/tex]
This calculates to:
[tex]\[ h \approx 521216582732.1647 \, \text{m} \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.