IDNLearn.com: Where your questions are met with thoughtful and precise answers. Get accurate and timely answers to your queries from our extensive network of experienced professionals.
Sagot :
To find the indefinite integral [tex]\(\int \frac{x^2 + x + 1}{\sqrt{x}} \, dx\)[/tex], we will start by simplifying the integrand. We can rewrite the integrand as follows:
[tex]\[ \frac{x^2 + x + 1}{\sqrt{x}} = \frac{x^2}{\sqrt{x}} + \frac{x}{\sqrt{x}} + \frac{1}{\sqrt{x}} \][/tex]
Next, we simplify each term separately:
1. [tex]\(\frac{x^2}{\sqrt{x}} = x^{2 - \frac{1}{2}} = x^{\frac{3}{2}}\)[/tex]
2. [tex]\(\frac{x}{\sqrt{x}} = x^{1 - \frac{1}{2}} = x^{\frac{1}{2}}\)[/tex]
3. [tex]\(\frac{1}{\sqrt{x}} = x^{0 - \frac{1}{2}} = x^{-\frac{1}{2}}\)[/tex]
Substituting these back into the integral, we get:
[tex]\[ \int \left( x^{\frac{3}{2}} + x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right) \, dx \][/tex]
Now, we can integrate each term separately using the power rule for integration, which states that [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], where [tex]\(C\)[/tex] is the constant of integration:
1. [tex]\(\int x^{\frac{3}{2}} \, dx = \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} = \frac{2}{5} x^{\frac{5}{2}}\)[/tex]
2. [tex]\(\int x^{\frac{1}{2}} \, dx = \frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2}{3} x^{\frac{3}{2}}\)[/tex]
3. [tex]\(\int x^{-\frac{1}{2}} \, dx = \frac{x^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} = 2x^{\frac{1}{2}}\)[/tex]
Combining these results, the indefinite integral is:
[tex]\[ \int \frac{x^2 + x + 1}{\sqrt{x}} \, dx = \frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C \][/tex]
This simplifies to:
[tex]\[ 2 \cdot \frac{1}{5} x^{\frac{5}{2}} + 2 \cdot \frac{1}{3} x^{\frac{3}{2}} + 2 \cdot 1 x^{\frac{1}{2}} + C \][/tex]
[tex]\[ = \frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2 \sqrt{x} + C \][/tex]
Thus, the final answer is:
[tex]\[ \boxed{\frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2 \sqrt{x} + C} \][/tex]
[tex]\[ \frac{x^2 + x + 1}{\sqrt{x}} = \frac{x^2}{\sqrt{x}} + \frac{x}{\sqrt{x}} + \frac{1}{\sqrt{x}} \][/tex]
Next, we simplify each term separately:
1. [tex]\(\frac{x^2}{\sqrt{x}} = x^{2 - \frac{1}{2}} = x^{\frac{3}{2}}\)[/tex]
2. [tex]\(\frac{x}{\sqrt{x}} = x^{1 - \frac{1}{2}} = x^{\frac{1}{2}}\)[/tex]
3. [tex]\(\frac{1}{\sqrt{x}} = x^{0 - \frac{1}{2}} = x^{-\frac{1}{2}}\)[/tex]
Substituting these back into the integral, we get:
[tex]\[ \int \left( x^{\frac{3}{2}} + x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right) \, dx \][/tex]
Now, we can integrate each term separately using the power rule for integration, which states that [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], where [tex]\(C\)[/tex] is the constant of integration:
1. [tex]\(\int x^{\frac{3}{2}} \, dx = \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} = \frac{2}{5} x^{\frac{5}{2}}\)[/tex]
2. [tex]\(\int x^{\frac{1}{2}} \, dx = \frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2}{3} x^{\frac{3}{2}}\)[/tex]
3. [tex]\(\int x^{-\frac{1}{2}} \, dx = \frac{x^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} = 2x^{\frac{1}{2}}\)[/tex]
Combining these results, the indefinite integral is:
[tex]\[ \int \frac{x^2 + x + 1}{\sqrt{x}} \, dx = \frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C \][/tex]
This simplifies to:
[tex]\[ 2 \cdot \frac{1}{5} x^{\frac{5}{2}} + 2 \cdot \frac{1}{3} x^{\frac{3}{2}} + 2 \cdot 1 x^{\frac{1}{2}} + C \][/tex]
[tex]\[ = \frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2 \sqrt{x} + C \][/tex]
Thus, the final answer is:
[tex]\[ \boxed{\frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2 \sqrt{x} + C} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.