Connect with knowledgeable experts and enthusiasts on IDNLearn.com. Ask your questions and receive comprehensive, trustworthy responses from our dedicated team of experts.
Sagot :
To find the indefinite integral [tex]\(\int \frac{x^2 + x + 1}{\sqrt{x}} \, dx\)[/tex], we will start by simplifying the integrand. We can rewrite the integrand as follows:
[tex]\[ \frac{x^2 + x + 1}{\sqrt{x}} = \frac{x^2}{\sqrt{x}} + \frac{x}{\sqrt{x}} + \frac{1}{\sqrt{x}} \][/tex]
Next, we simplify each term separately:
1. [tex]\(\frac{x^2}{\sqrt{x}} = x^{2 - \frac{1}{2}} = x^{\frac{3}{2}}\)[/tex]
2. [tex]\(\frac{x}{\sqrt{x}} = x^{1 - \frac{1}{2}} = x^{\frac{1}{2}}\)[/tex]
3. [tex]\(\frac{1}{\sqrt{x}} = x^{0 - \frac{1}{2}} = x^{-\frac{1}{2}}\)[/tex]
Substituting these back into the integral, we get:
[tex]\[ \int \left( x^{\frac{3}{2}} + x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right) \, dx \][/tex]
Now, we can integrate each term separately using the power rule for integration, which states that [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], where [tex]\(C\)[/tex] is the constant of integration:
1. [tex]\(\int x^{\frac{3}{2}} \, dx = \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} = \frac{2}{5} x^{\frac{5}{2}}\)[/tex]
2. [tex]\(\int x^{\frac{1}{2}} \, dx = \frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2}{3} x^{\frac{3}{2}}\)[/tex]
3. [tex]\(\int x^{-\frac{1}{2}} \, dx = \frac{x^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} = 2x^{\frac{1}{2}}\)[/tex]
Combining these results, the indefinite integral is:
[tex]\[ \int \frac{x^2 + x + 1}{\sqrt{x}} \, dx = \frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C \][/tex]
This simplifies to:
[tex]\[ 2 \cdot \frac{1}{5} x^{\frac{5}{2}} + 2 \cdot \frac{1}{3} x^{\frac{3}{2}} + 2 \cdot 1 x^{\frac{1}{2}} + C \][/tex]
[tex]\[ = \frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2 \sqrt{x} + C \][/tex]
Thus, the final answer is:
[tex]\[ \boxed{\frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2 \sqrt{x} + C} \][/tex]
[tex]\[ \frac{x^2 + x + 1}{\sqrt{x}} = \frac{x^2}{\sqrt{x}} + \frac{x}{\sqrt{x}} + \frac{1}{\sqrt{x}} \][/tex]
Next, we simplify each term separately:
1. [tex]\(\frac{x^2}{\sqrt{x}} = x^{2 - \frac{1}{2}} = x^{\frac{3}{2}}\)[/tex]
2. [tex]\(\frac{x}{\sqrt{x}} = x^{1 - \frac{1}{2}} = x^{\frac{1}{2}}\)[/tex]
3. [tex]\(\frac{1}{\sqrt{x}} = x^{0 - \frac{1}{2}} = x^{-\frac{1}{2}}\)[/tex]
Substituting these back into the integral, we get:
[tex]\[ \int \left( x^{\frac{3}{2}} + x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right) \, dx \][/tex]
Now, we can integrate each term separately using the power rule for integration, which states that [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], where [tex]\(C\)[/tex] is the constant of integration:
1. [tex]\(\int x^{\frac{3}{2}} \, dx = \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} = \frac{2}{5} x^{\frac{5}{2}}\)[/tex]
2. [tex]\(\int x^{\frac{1}{2}} \, dx = \frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2}{3} x^{\frac{3}{2}}\)[/tex]
3. [tex]\(\int x^{-\frac{1}{2}} \, dx = \frac{x^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} = 2x^{\frac{1}{2}}\)[/tex]
Combining these results, the indefinite integral is:
[tex]\[ \int \frac{x^2 + x + 1}{\sqrt{x}} \, dx = \frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C \][/tex]
This simplifies to:
[tex]\[ 2 \cdot \frac{1}{5} x^{\frac{5}{2}} + 2 \cdot \frac{1}{3} x^{\frac{3}{2}} + 2 \cdot 1 x^{\frac{1}{2}} + C \][/tex]
[tex]\[ = \frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2 \sqrt{x} + C \][/tex]
Thus, the final answer is:
[tex]\[ \boxed{\frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2 \sqrt{x} + C} \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.