Get expert advice and insights on any topic with IDNLearn.com. Discover prompt and accurate answers from our experts, ensuring you get the information you need quickly.

For yellow light, what is the minimum deviation produced by a prism of angle [tex]\(60^{\circ}\)[/tex] and refractive index 2?

Given:
[tex]\[
\mu = 2, \quad A = 60^{\circ}, \quad \delta_{m} = ?
\][/tex]

Substituting in the formula,
[tex]\[
\sin \left(\frac{A + \delta_m}{2}\right) = \mu \sin \left(\frac{A}{2}\right)
\][/tex]

[tex]\[
\sin \left(\frac{60^{\circ} + \delta_m}{2}\right) = 2 \sin 30^{\circ}
\][/tex]

[tex]\[
\therefore \quad \delta_{m} = 36.3^{\circ}
\][/tex]


Sagot :

To find the minimum deviation angle [tex]\(\delta_m\)[/tex] produced by a prism with an angle [tex]\(A = 60^\circ\)[/tex] and a refractive index [tex]\(\mu = 2\)[/tex], we can use the formula for the angle of minimum deviation for a prism:

[tex]\[ \delta_m = 2 \arcsin\left(\mu \cdot \sin\left(\frac{A}{2}\right)\right) - A \][/tex]

Let's solve this step-by-step:

1. Convert the prism angle from degrees to radians:

[tex]\[ A = 60^\circ \][/tex]

We need this angle in radians:

[tex]\[ A_{\text{rad}} = \frac{60 \times \pi}{180} = \frac{\pi}{3} \approx 1.0471975511965976 \, \text{radians} \][/tex]

2. Calculate the half-angle of the prism in radians:

[tex]\[ \frac{A}{2} = \frac{60^\circ}{2} = 30^\circ \][/tex]

In radians:

[tex]\[ \left(\frac{A}{2}\right)_{\text{rad}} = \frac{30 \times \pi}{180} = \frac{\pi}{6} \approx 0.5235987755982988 \, \text{radians} \][/tex]

3. Calculate [tex]\(\sin\left(\frac{A}{2}\right)\)[/tex]:

[tex]\[ \sin\left(\frac{A}{2}\right) = \sin\left(30^\circ\right) = \frac{1}{2} = 0.5 \][/tex]

4. Calculate the term inside the arcsine function:

[tex]\[ \mu \cdot \sin\left(\frac{A}{2}\right) = 2 \cdot 0.5 = 1 \][/tex]

However, due to numerical precision, this value might slightly differ, for example:
[tex]\[ \mu \cdot \sin\left(\frac{A}{2}\right) \approx 0.9999999999999999 \][/tex]

5. Calculate the arcsine of this term:

[tex]\[ \arcsin\left(0.9999999999999999\right) \approx \arcsin(1) = \frac{\pi}{2} \approx 1.5707963118937354 \, \text{radians} \][/tex]

6. Calculate the minimum deviation in radians:

[tex]\[ \delta_{m, \text{rad}} = 2 \cdot \arcsin\left(\mu \cdot \sin\left(\frac{A}{2}\right)\right) - A_{\text{rad}} \][/tex]

Substitute the values we have calculated:

[tex]\[ \delta_{m, \text{rad}} = 2 \times 1.5707963118937354 - 1.0471975511965976 \approx 2.0943950725908733 \, \text{radians} \][/tex]

7. Convert the minimum deviation from radians back to degrees:

[tex]\[ \delta_{m} \approx 2.0943950725908733 \times \frac{180}{\pi} \approx 119.99999829245273^\circ \][/tex]

Thus, the minimum deviation ([tex]\(\delta_m\)[/tex]) for yellow light in this prism is approximately:

[tex]\[ \delta_m \approx 119.99999829245273^\circ \][/tex]