Find trusted answers to your questions with the help of IDNLearn.com's knowledgeable community. Our platform offers comprehensive and accurate responses to help you make informed decisions on any topic.
Sagot :
To prove that [tex]\(\sin 2A + \sin 2B - \sin 2C = 4 \cos A \cdot \cos B \cdot \sin C\)[/tex] given that [tex]\(A + B + C = \pi\)[/tex], follow these steps:
1. Express [tex]\(C\)[/tex] in terms of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Since [tex]\(A + B + C = \pi\)[/tex], we can write [tex]\(C = \pi - A - B\)[/tex].
2. Substitute [tex]\(C\)[/tex] into the expression we are trying to prove:
Replace [tex]\(C\)[/tex] in the equation [tex]\(\sin 2A + \sin 2B - \sin 2C\)[/tex] with [tex]\(\pi - A - B\)[/tex].
We get:
[tex]\[ \sin 2A + \sin 2B - \sin 2(\pi - A - B) \][/tex]
3. Simplify the trigonometric expressions:
Recall the trigonometric identity for the sine of a sum: [tex]\(\sin(\pi - \theta) = \sin \theta\)[/tex]. Then:
[tex]\[ \sin 2(\pi - A - B) = \sin 2(\pi - (A + B)) = \sin (2\pi - 2(A + B)) = -\sin 2(A + B) \][/tex]
because [tex]\(\sin(2\pi - x) = -\sin x\)[/tex].
4. Substitute this back into the original expression:
[tex]\[ \sin 2A + \sin 2B - (-\sin 2(A + B)) = \sin 2A + \sin 2B + \sin 2(A + B) \][/tex]
5. Recall the product-to-sum identities to verify the right-hand side:
We aim to show that this is equal to [tex]\(4 \cos A \cdot \cos B \cdot \sin C\)[/tex]. Start with the product-to-sum formula for sines and cosines:
[tex]\[ 4 \cos A \cdot \cos B \cdot \sin C = 4 \cos A \cdot \cos B \cdot \sin (\pi - A - B) \][/tex]
Since [tex]\(\sin(\pi - \theta) = \sin \theta\)[/tex]:
[tex]\[ 4 \cos A \cdot \cos B \cdot \sin C = 4 \cos A \cdot \cos B \cdot \sin (A + B) \][/tex]
6. Conclusion:
Both simplified forms of the left and right sides match:
[tex]\[ \sin 2A + \sin 2B + \sin 2(A + B) = 4 \cos A \cdot \cos B \cdot \sin (A + B) \][/tex]
Therefore, we have successfully proven that
[tex]\[ \sin 2A + \sin 2B - \sin 2C = 4 \cos A \cdot \cos B \cdot \sin C \][/tex]
under the condition that [tex]\(A + B + C = \pi\)[/tex].
1. Express [tex]\(C\)[/tex] in terms of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Since [tex]\(A + B + C = \pi\)[/tex], we can write [tex]\(C = \pi - A - B\)[/tex].
2. Substitute [tex]\(C\)[/tex] into the expression we are trying to prove:
Replace [tex]\(C\)[/tex] in the equation [tex]\(\sin 2A + \sin 2B - \sin 2C\)[/tex] with [tex]\(\pi - A - B\)[/tex].
We get:
[tex]\[ \sin 2A + \sin 2B - \sin 2(\pi - A - B) \][/tex]
3. Simplify the trigonometric expressions:
Recall the trigonometric identity for the sine of a sum: [tex]\(\sin(\pi - \theta) = \sin \theta\)[/tex]. Then:
[tex]\[ \sin 2(\pi - A - B) = \sin 2(\pi - (A + B)) = \sin (2\pi - 2(A + B)) = -\sin 2(A + B) \][/tex]
because [tex]\(\sin(2\pi - x) = -\sin x\)[/tex].
4. Substitute this back into the original expression:
[tex]\[ \sin 2A + \sin 2B - (-\sin 2(A + B)) = \sin 2A + \sin 2B + \sin 2(A + B) \][/tex]
5. Recall the product-to-sum identities to verify the right-hand side:
We aim to show that this is equal to [tex]\(4 \cos A \cdot \cos B \cdot \sin C\)[/tex]. Start with the product-to-sum formula for sines and cosines:
[tex]\[ 4 \cos A \cdot \cos B \cdot \sin C = 4 \cos A \cdot \cos B \cdot \sin (\pi - A - B) \][/tex]
Since [tex]\(\sin(\pi - \theta) = \sin \theta\)[/tex]:
[tex]\[ 4 \cos A \cdot \cos B \cdot \sin C = 4 \cos A \cdot \cos B \cdot \sin (A + B) \][/tex]
6. Conclusion:
Both simplified forms of the left and right sides match:
[tex]\[ \sin 2A + \sin 2B + \sin 2(A + B) = 4 \cos A \cdot \cos B \cdot \sin (A + B) \][/tex]
Therefore, we have successfully proven that
[tex]\[ \sin 2A + \sin 2B - \sin 2C = 4 \cos A \cdot \cos B \cdot \sin C \][/tex]
under the condition that [tex]\(A + B + C = \pi\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.