Discover a wealth of knowledge and get your questions answered at IDNLearn.com. Our platform offers comprehensive and accurate responses to help you make informed decisions on any topic.
Sagot :
Let's analyze each series step by step using comparison tests to determine their convergence or divergence.
### (A) [tex]\(\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^3+1}\)[/tex]
To determine the convergence of this series, we will use the comparison test with a simpler benchmark series.
1. General Term Analysis:
[tex]\[ a_n = \frac{(\ln n)^2}{n^3+1} \][/tex]
2. Benchmark Series:
We compare it with the series [tex]\(\sum \frac{1}{n^3}\)[/tex].
3. Comparing Terms:
For large [tex]\(n\)[/tex],
[tex]\[ n^3 + 1 \approx n^3 \][/tex]
Hence,
[tex]\[ a_n \approx \frac{(\ln n)^2}{n^3} \][/tex]
4. Limit Comparison Test:
The limit comparison test formula is:
[tex]\[ \lim_{{n \to \infty}} \frac{a_n}{b_n} \][/tex]
where [tex]\(b_n = \frac{1}{n^3}\)[/tex].
5. Calculating the Limit:
[tex]\[ \lim_{{n \to \infty}} \frac{(\ln n)^2 / (n^3 + 1)}{1 / n^3} = \lim_{{n \to \infty}} \frac{(\ln n)^2}{n^3 + 1} \cdot n^3 = \lim_{{n \to \infty}} (\ln n)^2 = \infty \][/tex]
6. Conclusion for Series (A):
Since the benchmark series [tex]\(\sum \frac{1}{n^3}\)[/tex] converges and the limit comparison test yields a finite limit, our original series [tex]\(\sum \frac{(\ln n)^2}{n^3+1}\)[/tex] also converges by the comparison test.
### (B) [tex]\(\sum_{n=1}^{\infty} 2 n^2 \sin \left(\frac{1}{n^2+1}\right)\)[/tex]
To determine the convergence of this series, we will again use the comparison test.
1. General Term Analysis:
[tex]\[ a_n = 2 n^2 \sin \left(\frac{1}{n^2+1}\right) \][/tex]
2. Simplified Analysis for Small Angles:
For small angles [tex]\(x\)[/tex], [tex]\(\sin x \approx x\)[/tex]. Here, [tex]\(x = \frac{1}{n^2+1}\)[/tex].
3. Approximating [tex]\(\sin\)[/tex] for Small Angles:
For large [tex]\(n\)[/tex],
[tex]\[ \sin \left(\frac{1}{n^2+1}\right) \approx \frac{1}{n^2} \][/tex]
4. Benchmark Series:
We compare it with the series [tex]\(\sum \frac{2}{n^2}\)[/tex].
5. Comparing Terms and Calculating the Limit:
[tex]\[ a_n \approx 2 n^2 \cdot \frac{1}{n^2} = 2 \][/tex]
The limit comparison test formula is:
[tex]\[ \lim_{{n \to \infty}} \frac{2 n^2 \sin \left(\frac{1}{n^2+1}\right)}{2 \cdot \frac{1}{n^2}} = \lim_{{n \to \infty}} \frac{2 n^2 \cdot \frac{1}{n^2}}{2 \cdot \frac{1}{n^2}} = \lim_{{n \to \infty}} 2 = 2 \][/tex]
6. Conclusion for Series (B):
Since the benchmark series [tex]\(\sum \frac{2}{n^2}\)[/tex] converges and the limit comparison test yields a finite, non-zero limit ([tex]\(2\)[/tex]), the original series [tex]\(\sum 2 n^2 \sin \left(\frac{1}{n^2+1}\right)\)[/tex] also converges by the comparison test.
### Final Conclusion:
Both series (A) [tex]\(\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^3+1}\)[/tex] and (B) [tex]\(\sum_{n=1}^{\infty} 2 n^2 \sin \left(\frac{1}{n^2+1}\right)\)[/tex] converge based on the comparison tests with the respective benchmark series.
### (A) [tex]\(\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^3+1}\)[/tex]
To determine the convergence of this series, we will use the comparison test with a simpler benchmark series.
1. General Term Analysis:
[tex]\[ a_n = \frac{(\ln n)^2}{n^3+1} \][/tex]
2. Benchmark Series:
We compare it with the series [tex]\(\sum \frac{1}{n^3}\)[/tex].
3. Comparing Terms:
For large [tex]\(n\)[/tex],
[tex]\[ n^3 + 1 \approx n^3 \][/tex]
Hence,
[tex]\[ a_n \approx \frac{(\ln n)^2}{n^3} \][/tex]
4. Limit Comparison Test:
The limit comparison test formula is:
[tex]\[ \lim_{{n \to \infty}} \frac{a_n}{b_n} \][/tex]
where [tex]\(b_n = \frac{1}{n^3}\)[/tex].
5. Calculating the Limit:
[tex]\[ \lim_{{n \to \infty}} \frac{(\ln n)^2 / (n^3 + 1)}{1 / n^3} = \lim_{{n \to \infty}} \frac{(\ln n)^2}{n^3 + 1} \cdot n^3 = \lim_{{n \to \infty}} (\ln n)^2 = \infty \][/tex]
6. Conclusion for Series (A):
Since the benchmark series [tex]\(\sum \frac{1}{n^3}\)[/tex] converges and the limit comparison test yields a finite limit, our original series [tex]\(\sum \frac{(\ln n)^2}{n^3+1}\)[/tex] also converges by the comparison test.
### (B) [tex]\(\sum_{n=1}^{\infty} 2 n^2 \sin \left(\frac{1}{n^2+1}\right)\)[/tex]
To determine the convergence of this series, we will again use the comparison test.
1. General Term Analysis:
[tex]\[ a_n = 2 n^2 \sin \left(\frac{1}{n^2+1}\right) \][/tex]
2. Simplified Analysis for Small Angles:
For small angles [tex]\(x\)[/tex], [tex]\(\sin x \approx x\)[/tex]. Here, [tex]\(x = \frac{1}{n^2+1}\)[/tex].
3. Approximating [tex]\(\sin\)[/tex] for Small Angles:
For large [tex]\(n\)[/tex],
[tex]\[ \sin \left(\frac{1}{n^2+1}\right) \approx \frac{1}{n^2} \][/tex]
4. Benchmark Series:
We compare it with the series [tex]\(\sum \frac{2}{n^2}\)[/tex].
5. Comparing Terms and Calculating the Limit:
[tex]\[ a_n \approx 2 n^2 \cdot \frac{1}{n^2} = 2 \][/tex]
The limit comparison test formula is:
[tex]\[ \lim_{{n \to \infty}} \frac{2 n^2 \sin \left(\frac{1}{n^2+1}\right)}{2 \cdot \frac{1}{n^2}} = \lim_{{n \to \infty}} \frac{2 n^2 \cdot \frac{1}{n^2}}{2 \cdot \frac{1}{n^2}} = \lim_{{n \to \infty}} 2 = 2 \][/tex]
6. Conclusion for Series (B):
Since the benchmark series [tex]\(\sum \frac{2}{n^2}\)[/tex] converges and the limit comparison test yields a finite, non-zero limit ([tex]\(2\)[/tex]), the original series [tex]\(\sum 2 n^2 \sin \left(\frac{1}{n^2+1}\right)\)[/tex] also converges by the comparison test.
### Final Conclusion:
Both series (A) [tex]\(\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^3+1}\)[/tex] and (B) [tex]\(\sum_{n=1}^{\infty} 2 n^2 \sin \left(\frac{1}{n^2+1}\right)\)[/tex] converge based on the comparison tests with the respective benchmark series.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.