Explore IDNLearn.com to discover insightful answers from experts and enthusiasts alike. Ask anything and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
To prove the given identity, we'll begin by simplifying the left-hand side (LHS) and compare it with the right-hand side (RHS).
The given identity is:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
First, look at the LHS of the equation:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} \][/tex]
To simplify the LHS, we need a common denominator:
[tex]\[ \frac{(\sin A + \cos A)^2 + (\sin A - \cos A)^2}{(\sin A - \cos A)(\sin A + \cos A)} \][/tex]
Let's expand the numerators:
[tex]\[ (\sin A + \cos A)^2 = \sin^2 A + 2\sin A \cos A + \cos^2 A \][/tex]
[tex]\[ (\sin A - \cos A)^2 = \sin^2 A - 2\sin A \cos A + \cos^2 A \][/tex]
Adding these two expressions:
[tex]\[ (\sin^2 A + 2\sin A \cos A + \cos^2 A) + (\sin^2 A - 2\sin A \cos A + \cos^2 A) \][/tex]
Combine like terms:
[tex]\[ \sin^2 A + \cos^2 A + \sin^2 A + \cos^2 A = 2\sin^2 A + 2\cos^2 A \][/tex]
The numerator now is:
[tex]\[ 2(\sin^2 A + \cos^2 A) \][/tex]
Next, simplify the denominator:
[tex]\[ (\sin A - \cos A)(\sin A + \cos A) = \sin^2 A - \cos^2 A \][/tex]
Now, we can rewrite the LHS as:
[tex]\[ \frac{2(\sin^2 A + \cos^2 A)}{\sin^2 A - \cos^2 A} \][/tex]
Using the Pythagorean identity:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
Substitute 1 for [tex]\(\sin^2 A + \cos^2 A\)[/tex]:
[tex]\[ \frac{2 \cdot 1}{\sin^2 A + \cos^2 A} = \frac{2}{1} = 2 \][/tex]
Thus, the LHS simplifies to:
[tex]\[ 2 \][/tex]
The RHS of the equation is:
[tex]\[ \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
Knowing:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
The RHS simplifies to:
[tex]\[ \frac{2}{1} = 2 \][/tex]
Hence, we have shown that:
[tex]\[ \text{LHS} = \text{RHS} = 2 \][/tex]
Therefore, the given identity is proven true:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
The given identity is:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
First, look at the LHS of the equation:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} \][/tex]
To simplify the LHS, we need a common denominator:
[tex]\[ \frac{(\sin A + \cos A)^2 + (\sin A - \cos A)^2}{(\sin A - \cos A)(\sin A + \cos A)} \][/tex]
Let's expand the numerators:
[tex]\[ (\sin A + \cos A)^2 = \sin^2 A + 2\sin A \cos A + \cos^2 A \][/tex]
[tex]\[ (\sin A - \cos A)^2 = \sin^2 A - 2\sin A \cos A + \cos^2 A \][/tex]
Adding these two expressions:
[tex]\[ (\sin^2 A + 2\sin A \cos A + \cos^2 A) + (\sin^2 A - 2\sin A \cos A + \cos^2 A) \][/tex]
Combine like terms:
[tex]\[ \sin^2 A + \cos^2 A + \sin^2 A + \cos^2 A = 2\sin^2 A + 2\cos^2 A \][/tex]
The numerator now is:
[tex]\[ 2(\sin^2 A + \cos^2 A) \][/tex]
Next, simplify the denominator:
[tex]\[ (\sin A - \cos A)(\sin A + \cos A) = \sin^2 A - \cos^2 A \][/tex]
Now, we can rewrite the LHS as:
[tex]\[ \frac{2(\sin^2 A + \cos^2 A)}{\sin^2 A - \cos^2 A} \][/tex]
Using the Pythagorean identity:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
Substitute 1 for [tex]\(\sin^2 A + \cos^2 A\)[/tex]:
[tex]\[ \frac{2 \cdot 1}{\sin^2 A + \cos^2 A} = \frac{2}{1} = 2 \][/tex]
Thus, the LHS simplifies to:
[tex]\[ 2 \][/tex]
The RHS of the equation is:
[tex]\[ \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
Knowing:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
The RHS simplifies to:
[tex]\[ \frac{2}{1} = 2 \][/tex]
Hence, we have shown that:
[tex]\[ \text{LHS} = \text{RHS} = 2 \][/tex]
Therefore, the given identity is proven true:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.