IDNLearn.com provides a collaborative environment for finding and sharing knowledge. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.
Sagot :
To prove the given identity, we'll begin by simplifying the left-hand side (LHS) and compare it with the right-hand side (RHS).
The given identity is:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
First, look at the LHS of the equation:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} \][/tex]
To simplify the LHS, we need a common denominator:
[tex]\[ \frac{(\sin A + \cos A)^2 + (\sin A - \cos A)^2}{(\sin A - \cos A)(\sin A + \cos A)} \][/tex]
Let's expand the numerators:
[tex]\[ (\sin A + \cos A)^2 = \sin^2 A + 2\sin A \cos A + \cos^2 A \][/tex]
[tex]\[ (\sin A - \cos A)^2 = \sin^2 A - 2\sin A \cos A + \cos^2 A \][/tex]
Adding these two expressions:
[tex]\[ (\sin^2 A + 2\sin A \cos A + \cos^2 A) + (\sin^2 A - 2\sin A \cos A + \cos^2 A) \][/tex]
Combine like terms:
[tex]\[ \sin^2 A + \cos^2 A + \sin^2 A + \cos^2 A = 2\sin^2 A + 2\cos^2 A \][/tex]
The numerator now is:
[tex]\[ 2(\sin^2 A + \cos^2 A) \][/tex]
Next, simplify the denominator:
[tex]\[ (\sin A - \cos A)(\sin A + \cos A) = \sin^2 A - \cos^2 A \][/tex]
Now, we can rewrite the LHS as:
[tex]\[ \frac{2(\sin^2 A + \cos^2 A)}{\sin^2 A - \cos^2 A} \][/tex]
Using the Pythagorean identity:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
Substitute 1 for [tex]\(\sin^2 A + \cos^2 A\)[/tex]:
[tex]\[ \frac{2 \cdot 1}{\sin^2 A + \cos^2 A} = \frac{2}{1} = 2 \][/tex]
Thus, the LHS simplifies to:
[tex]\[ 2 \][/tex]
The RHS of the equation is:
[tex]\[ \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
Knowing:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
The RHS simplifies to:
[tex]\[ \frac{2}{1} = 2 \][/tex]
Hence, we have shown that:
[tex]\[ \text{LHS} = \text{RHS} = 2 \][/tex]
Therefore, the given identity is proven true:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
The given identity is:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
First, look at the LHS of the equation:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} \][/tex]
To simplify the LHS, we need a common denominator:
[tex]\[ \frac{(\sin A + \cos A)^2 + (\sin A - \cos A)^2}{(\sin A - \cos A)(\sin A + \cos A)} \][/tex]
Let's expand the numerators:
[tex]\[ (\sin A + \cos A)^2 = \sin^2 A + 2\sin A \cos A + \cos^2 A \][/tex]
[tex]\[ (\sin A - \cos A)^2 = \sin^2 A - 2\sin A \cos A + \cos^2 A \][/tex]
Adding these two expressions:
[tex]\[ (\sin^2 A + 2\sin A \cos A + \cos^2 A) + (\sin^2 A - 2\sin A \cos A + \cos^2 A) \][/tex]
Combine like terms:
[tex]\[ \sin^2 A + \cos^2 A + \sin^2 A + \cos^2 A = 2\sin^2 A + 2\cos^2 A \][/tex]
The numerator now is:
[tex]\[ 2(\sin^2 A + \cos^2 A) \][/tex]
Next, simplify the denominator:
[tex]\[ (\sin A - \cos A)(\sin A + \cos A) = \sin^2 A - \cos^2 A \][/tex]
Now, we can rewrite the LHS as:
[tex]\[ \frac{2(\sin^2 A + \cos^2 A)}{\sin^2 A - \cos^2 A} \][/tex]
Using the Pythagorean identity:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
Substitute 1 for [tex]\(\sin^2 A + \cos^2 A\)[/tex]:
[tex]\[ \frac{2 \cdot 1}{\sin^2 A + \cos^2 A} = \frac{2}{1} = 2 \][/tex]
Thus, the LHS simplifies to:
[tex]\[ 2 \][/tex]
The RHS of the equation is:
[tex]\[ \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
Knowing:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]
The RHS simplifies to:
[tex]\[ \frac{2}{1} = 2 \][/tex]
Hence, we have shown that:
[tex]\[ \text{LHS} = \text{RHS} = 2 \][/tex]
Therefore, the given identity is proven true:
[tex]\[ \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{\sin^2 A + \cos^2 A} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.