Find solutions to your problems with the help of IDNLearn.com's knowledgeable users. Our community provides accurate and timely answers to help you understand and solve any issue.
Sagot :
Let's analyze the data for each trial to determine which one shows the conservation of momentum. Conservation of momentum states that the total initial momentum before the collision should equal the total final momentum after the collision.
### Trial 1
- Initial velocities:
- Ball A: [tex]\( +1.0 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -2.0 \, \text{m/s} \)[/tex]
- Final velocities:
- Ball A: [tex]\( -2.0 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -1.0 \, \text{m/s} \)[/tex]
Initial momentum:
[tex]\[ \text{Initial momentum} = (1.0 \, \text{kg} \times 1.0 \, \text{m/s}) + (1.0 \, \text{kg} \times -2.0 \, \text{m/s}) = 1.0 \, \text{kg.m/s} + (-2.0 \, \text{kg.m/s}) = -1.0 \, \text{kg.m/s} \][/tex]
Final momentum:
[tex]\[ \text{Final momentum} = (1.0 \, \text{kg} \times -2.0 \, \text{m/s}) + (1.0 \, \text{kg} \times -1.0 \, \text{m/s}) = (-2.0 \, \text{kg.m/s}) + (-1.0 \, \text{kg.m/s}) = -3.0 \, \text{kg.m/s} \][/tex]
Since the initial momentum is [tex]\(-1.0 \, \text{kg.m/s}\)[/tex] and the final momentum is [tex]\(-3.0 \, \text{kg.m/s}\)[/tex], momentum is not conserved in Trial 1.
### Trial 2
- Initial velocities:
- Ball A: [tex]\( +0.5 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -1.5 \, \text{m/s} \)[/tex]
- Final velocities:
- Ball A: [tex]\( -0.5 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -0.5 \, \text{m/s} \)[/tex]
Initial momentum:
[tex]\[ \text{Initial momentum} = (1.0 \, \text{kg} \times 0.5 \, \text{m/s}) + (1.0 \, \text{kg} \times -1.5 \, \text{m/s}) = 0.5 \, \text{kg.m/s} + (-1.5 \, \text{kg.m/s}) = -1.0 \, \text{kg.m/s} \][/tex]
Final momentum:
[tex]\[ \text{Final momentum} = (1.0 \, \text{kg} \times -0.5 \, \text{m/s}) + (1.0 \, \text{kg} \times -0.5 \, \text{m/s}) = (-0.5 \, \text{kg.m/s}) + (-0.5 \, \text{kg.m/s}) = -1.0 \, \text{kg.m/s} \][/tex]
Since the initial momentum is [tex]\(-1.0 \, \text{kg.m/s}\)[/tex] and the final momentum is [tex]\(-1.0 \, \text{kg.m/s}\)[/tex], momentum is conserved in Trial 2.
### Trial 3
- Initial velocities:
- Ball A: [tex]\( +2.0 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( +1.0 \, \text{m/s} \)[/tex]
- Final velocities:
- Ball A: [tex]\( +1.0 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -2.0 \, \text{m/s} \)[/tex]
Initial momentum:
[tex]\[ \text{Initial momentum} = (1.0 \, \text{kg} \times 2.0 \, \text{m/s}) + (1.0 \, \text{kg} \times 1.0 \, \text{m/s}) = 2.0 \, \text{kg.m/s} + 1.0 \, \text{kg.m/s} = 3.0 \, \text{kg.m/s} \][/tex]
Final momentum:
[tex]\[ \text{Final momentum} = (1.0 \, \text{kg} \times 1.0 \, \text{m/s}) + (1.0 \, \text{kg} \times -2.0 \, \text{m/s}) = 1.0 \, \text{kg.m/s} + (-2.0 \, \text{kg.m/s}) = -1.0 \, \text{kg.m/s} \][/tex]
Since the initial momentum is [tex]\(3.0 \, \text{kg.m/s}\)[/tex] and the final momentum is [tex]\(-1.0 \, \text{kg.m/s}\)[/tex], momentum is not conserved in Trial 3.
### Trial 4
- Initial velocities:
- Ball A: [tex]\( +0.5 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -1.0 \, \text{m/s} \)[/tex]
- Final velocities:
- Ball A: [tex]\( +1.5 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -1.5 \, \text{m/s} \)[/tex]
Initial momentum:
[tex]\[ \text{Initial momentum} = (1.0 \, \text{kg} \times 0.5 \, \text{m/s}) + (1.0 \, \text{kg} \times -1.0 \, \text{m/s}) = 0.5 \, \text{kg.m/s} + (-1.0 \, \text{kg.m/s}) = -0.5 \, \text{kg.m/s} \][/tex]
Final momentum:
[tex]\[ \text{Final momentum} = (1.0 \, \text{kg} \times 1.5 \, \text{m/s}) + (1.0 \, \text{kg} \times -1.5 \, \text{m/s}) = 1.5 \, \text{kg.m/s} + (-1.5 \, \text{kg.m/s}) = 0.0 \, \text{kg.m/s} \][/tex]
Since the initial momentum is [tex]\(-0.5 \, \text{kg.m/s}\)[/tex] and the final momentum is [tex]\(0.0 \, \text{kg.m/s}\)[/tex], momentum is not conserved in Trial 4.
### Conclusion
Analyzing the results, we find that:
- Trial 1: Momentum is not conserved.
- Trial 2: Momentum is conserved.
- Trial 3: Momentum is not conserved.
- Trial 4: Momentum is not conserved.
Thus, Trial 2 shows the conservation of momentum in a closed system.
### Trial 1
- Initial velocities:
- Ball A: [tex]\( +1.0 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -2.0 \, \text{m/s} \)[/tex]
- Final velocities:
- Ball A: [tex]\( -2.0 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -1.0 \, \text{m/s} \)[/tex]
Initial momentum:
[tex]\[ \text{Initial momentum} = (1.0 \, \text{kg} \times 1.0 \, \text{m/s}) + (1.0 \, \text{kg} \times -2.0 \, \text{m/s}) = 1.0 \, \text{kg.m/s} + (-2.0 \, \text{kg.m/s}) = -1.0 \, \text{kg.m/s} \][/tex]
Final momentum:
[tex]\[ \text{Final momentum} = (1.0 \, \text{kg} \times -2.0 \, \text{m/s}) + (1.0 \, \text{kg} \times -1.0 \, \text{m/s}) = (-2.0 \, \text{kg.m/s}) + (-1.0 \, \text{kg.m/s}) = -3.0 \, \text{kg.m/s} \][/tex]
Since the initial momentum is [tex]\(-1.0 \, \text{kg.m/s}\)[/tex] and the final momentum is [tex]\(-3.0 \, \text{kg.m/s}\)[/tex], momentum is not conserved in Trial 1.
### Trial 2
- Initial velocities:
- Ball A: [tex]\( +0.5 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -1.5 \, \text{m/s} \)[/tex]
- Final velocities:
- Ball A: [tex]\( -0.5 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -0.5 \, \text{m/s} \)[/tex]
Initial momentum:
[tex]\[ \text{Initial momentum} = (1.0 \, \text{kg} \times 0.5 \, \text{m/s}) + (1.0 \, \text{kg} \times -1.5 \, \text{m/s}) = 0.5 \, \text{kg.m/s} + (-1.5 \, \text{kg.m/s}) = -1.0 \, \text{kg.m/s} \][/tex]
Final momentum:
[tex]\[ \text{Final momentum} = (1.0 \, \text{kg} \times -0.5 \, \text{m/s}) + (1.0 \, \text{kg} \times -0.5 \, \text{m/s}) = (-0.5 \, \text{kg.m/s}) + (-0.5 \, \text{kg.m/s}) = -1.0 \, \text{kg.m/s} \][/tex]
Since the initial momentum is [tex]\(-1.0 \, \text{kg.m/s}\)[/tex] and the final momentum is [tex]\(-1.0 \, \text{kg.m/s}\)[/tex], momentum is conserved in Trial 2.
### Trial 3
- Initial velocities:
- Ball A: [tex]\( +2.0 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( +1.0 \, \text{m/s} \)[/tex]
- Final velocities:
- Ball A: [tex]\( +1.0 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -2.0 \, \text{m/s} \)[/tex]
Initial momentum:
[tex]\[ \text{Initial momentum} = (1.0 \, \text{kg} \times 2.0 \, \text{m/s}) + (1.0 \, \text{kg} \times 1.0 \, \text{m/s}) = 2.0 \, \text{kg.m/s} + 1.0 \, \text{kg.m/s} = 3.0 \, \text{kg.m/s} \][/tex]
Final momentum:
[tex]\[ \text{Final momentum} = (1.0 \, \text{kg} \times 1.0 \, \text{m/s}) + (1.0 \, \text{kg} \times -2.0 \, \text{m/s}) = 1.0 \, \text{kg.m/s} + (-2.0 \, \text{kg.m/s}) = -1.0 \, \text{kg.m/s} \][/tex]
Since the initial momentum is [tex]\(3.0 \, \text{kg.m/s}\)[/tex] and the final momentum is [tex]\(-1.0 \, \text{kg.m/s}\)[/tex], momentum is not conserved in Trial 3.
### Trial 4
- Initial velocities:
- Ball A: [tex]\( +0.5 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -1.0 \, \text{m/s} \)[/tex]
- Final velocities:
- Ball A: [tex]\( +1.5 \, \text{m/s} \)[/tex]
- Ball B: [tex]\( -1.5 \, \text{m/s} \)[/tex]
Initial momentum:
[tex]\[ \text{Initial momentum} = (1.0 \, \text{kg} \times 0.5 \, \text{m/s}) + (1.0 \, \text{kg} \times -1.0 \, \text{m/s}) = 0.5 \, \text{kg.m/s} + (-1.0 \, \text{kg.m/s}) = -0.5 \, \text{kg.m/s} \][/tex]
Final momentum:
[tex]\[ \text{Final momentum} = (1.0 \, \text{kg} \times 1.5 \, \text{m/s}) + (1.0 \, \text{kg} \times -1.5 \, \text{m/s}) = 1.5 \, \text{kg.m/s} + (-1.5 \, \text{kg.m/s}) = 0.0 \, \text{kg.m/s} \][/tex]
Since the initial momentum is [tex]\(-0.5 \, \text{kg.m/s}\)[/tex] and the final momentum is [tex]\(0.0 \, \text{kg.m/s}\)[/tex], momentum is not conserved in Trial 4.
### Conclusion
Analyzing the results, we find that:
- Trial 1: Momentum is not conserved.
- Trial 2: Momentum is conserved.
- Trial 3: Momentum is not conserved.
- Trial 4: Momentum is not conserved.
Thus, Trial 2 shows the conservation of momentum in a closed system.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.