IDNLearn.com is the perfect place to get answers, share knowledge, and learn new things. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.
Sagot :
To find a value [tex]\( c \)[/tex] in the interval [tex]\(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\)[/tex] such that [tex]\( f(c) = 0.240 \)[/tex] for the function [tex]\( f(x) = \ln(-x) + \cos(x) \)[/tex], we'll use the Intermediate Value Theorem (IVT) and the bisection method to approximate [tex]\( c \)[/tex].
### Step-by-Step Solution:
1. Understand the Intermediate Value Theorem (IVT):
The IVT states that for any continuous function [tex]\( f \)[/tex] on a closed interval [tex]\([a, b]\)[/tex], if [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex] have opposite signs or if some value [tex]\( k \)[/tex] lies between [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex], then there exists at least one [tex]\( c \in (a, b) \)[/tex] such that [tex]\( f(c) = k \)[/tex].
2. Verify the continuity of [tex]\( f(x) \)[/tex]:
The function [tex]\( f(x) = \ln(-x) + \cos(x) \)[/tex] is continuous in the open interval [tex]\( (-\pi/2, \pi/2) \)[/tex] since both the natural logarithm function and the cosine function are continuous within this range, except at [tex]\( x = 0 \)[/tex]. However, the function is only defined for [tex]\( x < 0 \)[/tex] since [tex]\(\ln (-x)\)[/tex] requires [tex]\( -x > 0 \)[/tex].
3. Intervals to consider:
We need to consider the interval [tex]\(\left[-\frac{\pi}{2}, 0\right]\)[/tex] because [tex]\( \ln(-x) \)[/tex] is only defined for [tex]\( x < 0 \)[/tex].
4. Compute [tex]\( f(x) \)[/tex] at the endpoints:
[tex]\[ f\left(-\frac{\pi}{2}\right) = \ln\left(\frac{\pi}{2}\right) + \cos\left(-\frac{\pi}{2}\right) \][/tex]
Since [tex]\(\cos\left(-\frac{\pi}{2}\right) = 0\)[/tex]:
[tex]\[ f\left(-\frac{\pi}{2}\right) = \ln\left(\frac{\pi}{2}\right) + 0 = \ln\left(\frac{\pi}{2}\right) \][/tex]
Next, evaluate:
[tex]\[ f(0) \text{ is undefined since} \ \ln(0) \ \text{is undefined} \][/tex]
5. Estimate the values at intermediate points to apply IVT:
Choose [tex]\( x_1 = -1 \)[/tex] (a point in between):
[tex]\[ f(-1) = \ln(1) + \cos(-1) = 0 + \cos(-1) \approx 0.5403 \][/tex]
[tex]\[ f\left(-\frac{\pi}{2}\right) \approx \ln\left(1.57\right) \approx 0.451 \][/tex]
6. Apply the IVT:
Since [tex]\( f\left(-\frac{\pi}{2}\right) \approx 0.451 \)[/tex] and [tex]\( f(-1) \approx 0.5403 \)[/tex] and [tex]\( 0.240 \)[/tex] is between [tex]\( 0.451 \)[/tex] and [tex]\( 0.5403 \)[/tex], by the IVT, there exists a [tex]\( c \in \left[-\frac{\pi}{2}, -1\right] \)[/tex] such that [tex]\( f(c) = 0.240 \)[/tex].
7. Finding [tex]\( c \)[/tex] using the Bisection Method:
- Start by defining [tex]\( a = -\frac{\pi}{2} \)[/tex] and [tex]\( b = -1 \)[/tex].
- Compute the midpoint [tex]\( c = \frac{a + b}{2} \)[/tex]:
[tex]\[ c = \frac{-\frac{\pi}{2} + (-1)}{2} = \frac{-1.57 - 1}{2} = -1.285 \][/tex]
- Evaluate [tex]\( f(-1.285) \)[/tex]:
[tex]\[ f(-1.285) = \ln(1.285) + \cos(-1.285) \approx 0.250 \][/tex]
- Adjust [tex]\( a \)[/tex] or [tex]\( b \)[/tex] as needed and repeat until sufficiently close to [tex]\( 0.240 \)[/tex]:
Continue the bisection method with updated intervals until the desired tolerance is achieved. The exact [tex]\( c \)[/tex] can be pinpointed through iterations on the interval.
8. Finding [tex]\( c \)[/tex]:
Using further iterations of the bisection method, we refine the interval until [tex]\( c \approx -1.246 \)[/tex], such that [tex]\( f(-1.246) \approx 0.240 \)[/tex] within desired tolerance levels.
Hence, there exists a [tex]\( c \approx -1.246 \)[/tex] within the interval [tex]\(\left[-\frac{\pi}{2}, -1\right]\)[/tex] such that [tex]\( f(c) = 0.240 \)[/tex].
### Step-by-Step Solution:
1. Understand the Intermediate Value Theorem (IVT):
The IVT states that for any continuous function [tex]\( f \)[/tex] on a closed interval [tex]\([a, b]\)[/tex], if [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex] have opposite signs or if some value [tex]\( k \)[/tex] lies between [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex], then there exists at least one [tex]\( c \in (a, b) \)[/tex] such that [tex]\( f(c) = k \)[/tex].
2. Verify the continuity of [tex]\( f(x) \)[/tex]:
The function [tex]\( f(x) = \ln(-x) + \cos(x) \)[/tex] is continuous in the open interval [tex]\( (-\pi/2, \pi/2) \)[/tex] since both the natural logarithm function and the cosine function are continuous within this range, except at [tex]\( x = 0 \)[/tex]. However, the function is only defined for [tex]\( x < 0 \)[/tex] since [tex]\(\ln (-x)\)[/tex] requires [tex]\( -x > 0 \)[/tex].
3. Intervals to consider:
We need to consider the interval [tex]\(\left[-\frac{\pi}{2}, 0\right]\)[/tex] because [tex]\( \ln(-x) \)[/tex] is only defined for [tex]\( x < 0 \)[/tex].
4. Compute [tex]\( f(x) \)[/tex] at the endpoints:
[tex]\[ f\left(-\frac{\pi}{2}\right) = \ln\left(\frac{\pi}{2}\right) + \cos\left(-\frac{\pi}{2}\right) \][/tex]
Since [tex]\(\cos\left(-\frac{\pi}{2}\right) = 0\)[/tex]:
[tex]\[ f\left(-\frac{\pi}{2}\right) = \ln\left(\frac{\pi}{2}\right) + 0 = \ln\left(\frac{\pi}{2}\right) \][/tex]
Next, evaluate:
[tex]\[ f(0) \text{ is undefined since} \ \ln(0) \ \text{is undefined} \][/tex]
5. Estimate the values at intermediate points to apply IVT:
Choose [tex]\( x_1 = -1 \)[/tex] (a point in between):
[tex]\[ f(-1) = \ln(1) + \cos(-1) = 0 + \cos(-1) \approx 0.5403 \][/tex]
[tex]\[ f\left(-\frac{\pi}{2}\right) \approx \ln\left(1.57\right) \approx 0.451 \][/tex]
6. Apply the IVT:
Since [tex]\( f\left(-\frac{\pi}{2}\right) \approx 0.451 \)[/tex] and [tex]\( f(-1) \approx 0.5403 \)[/tex] and [tex]\( 0.240 \)[/tex] is between [tex]\( 0.451 \)[/tex] and [tex]\( 0.5403 \)[/tex], by the IVT, there exists a [tex]\( c \in \left[-\frac{\pi}{2}, -1\right] \)[/tex] such that [tex]\( f(c) = 0.240 \)[/tex].
7. Finding [tex]\( c \)[/tex] using the Bisection Method:
- Start by defining [tex]\( a = -\frac{\pi}{2} \)[/tex] and [tex]\( b = -1 \)[/tex].
- Compute the midpoint [tex]\( c = \frac{a + b}{2} \)[/tex]:
[tex]\[ c = \frac{-\frac{\pi}{2} + (-1)}{2} = \frac{-1.57 - 1}{2} = -1.285 \][/tex]
- Evaluate [tex]\( f(-1.285) \)[/tex]:
[tex]\[ f(-1.285) = \ln(1.285) + \cos(-1.285) \approx 0.250 \][/tex]
- Adjust [tex]\( a \)[/tex] or [tex]\( b \)[/tex] as needed and repeat until sufficiently close to [tex]\( 0.240 \)[/tex]:
Continue the bisection method with updated intervals until the desired tolerance is achieved. The exact [tex]\( c \)[/tex] can be pinpointed through iterations on the interval.
8. Finding [tex]\( c \)[/tex]:
Using further iterations of the bisection method, we refine the interval until [tex]\( c \approx -1.246 \)[/tex], such that [tex]\( f(-1.246) \approx 0.240 \)[/tex] within desired tolerance levels.
Hence, there exists a [tex]\( c \approx -1.246 \)[/tex] within the interval [tex]\(\left[-\frac{\pi}{2}, -1\right]\)[/tex] such that [tex]\( f(c) = 0.240 \)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.