IDNLearn.com offers a comprehensive solution for all your question and answer needs. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
To solve this linear programming problem, we aim to maximize the objective function [tex]\(Z = 4x_1 + 8x_2\)[/tex] subject to the given constraints:
1. [tex]\(2x_1 + 3x_2 \leq 48\)[/tex]
2. [tex]\(x_1 \leq 15\)[/tex]
3. [tex]\(x_2 \leq 10\)[/tex]
4. [tex]\(x_1 \geq 0\)[/tex]
5. [tex]\(x_2 \geq 0\)[/tex]
Here is the step-by-step solution:
1. Formulate the Problem:
- Objective function: [tex]\(Z = 4x_1 + 8x_2\)[/tex]
- Constraints:
- [tex]\(2x_1 + 3x_2 \leq 48\)[/tex]
- [tex]\(x_1 \leq 15\)[/tex]
- [tex]\(x_2 \leq 10\)[/tex]
- [tex]\(x_1 \geq 0\)[/tex]
- [tex]\(x_2 \geq 0\)[/tex]
2. Identify the Feasible Region:
The feasible region is defined by the intersection of the half-planes created by the constraints. The vertices of the feasible region need to be determined as follows:
- The intersection points of the constraints form the boundary of the feasible region.
3. Evaluate the Objective Function at the Vertices:
We need to evaluate the objective function [tex]\(Z = 4x_1 + 8x_2\)[/tex] at each vertex of the feasible region.
- Vertex at (0,0):
[tex]\(Z = 4(0) + 8(0) = 0\)[/tex]
- Vertex at the intersection of [tex]\(x_1 = 15\)[/tex] and [tex]\(2x_1 + 3x_2 \leq 48\)[/tex]:
Substituting [tex]\(x_1 = 15\)[/tex] into [tex]\(2x_1 + 3x_2 = 48\)[/tex], we get:
[tex]\(2(15) + 3x_2 = 48\)[/tex]
[tex]\(30 + 3x_2 = 48\)[/tex]
[tex]\(3x_2 = 18\)[/tex]
[tex]\(x_2 = 6\)[/tex]
So the vertex is (15, 6).
[tex]\(Z = 4(15) + 8(6) = 60 + 48 = 108\)[/tex]
- Vertex at the intersection of [tex]\(x_2 = 10\)[/tex] and [tex]\(2x_1 + 3x_2 \leq 48\)[/tex]:
Substituting [tex]\(x_2 = 10\)[/tex] into [tex]\(2x_1 + 3x_2 = 48\)[/tex], we get:
[tex]\(2x_1 + 3(10) = 48\)[/tex]
[tex]\(2x_1 + 30 = 48\)[/tex]
[tex]\(2x_1 = 18\)[/tex]
[tex]\(x_1 = 9\)[/tex]
So the vertex is (9, 10).
[tex]\(Z = 4(9) + 8(10) = 36 + 80 = 116\)[/tex]
- Vertex at the intersection of [tex]\(x_1 = 0\)[/tex] and [tex]\(x_2 = 10\)[/tex]:
So the vertex is (0, 10).
[tex]\(Z = 4(0) + 8(10) = 0 + 80 = 80\)[/tex]
- Vertex at the intersection of [tex]\(x_2 = 0\)[/tex] and [tex]\(x_1 = 15\)[/tex]:
So the vertex is (15, 0).
[tex]\(Z = 4(15) + 0 = 60\)[/tex]
4. Determine the Maximum Value:
From the above calculations, the objective function [tex]\(Z\)[/tex] achieves its maximum value at the vertex (9, 10).
Therefore, the optimal solution is:
- [tex]\(x_1 = 9\)[/tex]
- [tex]\(x_2 = 10\)[/tex]
- [tex]\(Z_{\max} = 116\)[/tex]
Thus, the maximum value of the objective function [tex]\(Z = 4x_1 + 8x_2\)[/tex] under the given constraints is [tex]\(116\)[/tex], achieved at [tex]\(x_1 = 9\)[/tex] and [tex]\(x_2 = 10\)[/tex].
1. [tex]\(2x_1 + 3x_2 \leq 48\)[/tex]
2. [tex]\(x_1 \leq 15\)[/tex]
3. [tex]\(x_2 \leq 10\)[/tex]
4. [tex]\(x_1 \geq 0\)[/tex]
5. [tex]\(x_2 \geq 0\)[/tex]
Here is the step-by-step solution:
1. Formulate the Problem:
- Objective function: [tex]\(Z = 4x_1 + 8x_2\)[/tex]
- Constraints:
- [tex]\(2x_1 + 3x_2 \leq 48\)[/tex]
- [tex]\(x_1 \leq 15\)[/tex]
- [tex]\(x_2 \leq 10\)[/tex]
- [tex]\(x_1 \geq 0\)[/tex]
- [tex]\(x_2 \geq 0\)[/tex]
2. Identify the Feasible Region:
The feasible region is defined by the intersection of the half-planes created by the constraints. The vertices of the feasible region need to be determined as follows:
- The intersection points of the constraints form the boundary of the feasible region.
3. Evaluate the Objective Function at the Vertices:
We need to evaluate the objective function [tex]\(Z = 4x_1 + 8x_2\)[/tex] at each vertex of the feasible region.
- Vertex at (0,0):
[tex]\(Z = 4(0) + 8(0) = 0\)[/tex]
- Vertex at the intersection of [tex]\(x_1 = 15\)[/tex] and [tex]\(2x_1 + 3x_2 \leq 48\)[/tex]:
Substituting [tex]\(x_1 = 15\)[/tex] into [tex]\(2x_1 + 3x_2 = 48\)[/tex], we get:
[tex]\(2(15) + 3x_2 = 48\)[/tex]
[tex]\(30 + 3x_2 = 48\)[/tex]
[tex]\(3x_2 = 18\)[/tex]
[tex]\(x_2 = 6\)[/tex]
So the vertex is (15, 6).
[tex]\(Z = 4(15) + 8(6) = 60 + 48 = 108\)[/tex]
- Vertex at the intersection of [tex]\(x_2 = 10\)[/tex] and [tex]\(2x_1 + 3x_2 \leq 48\)[/tex]:
Substituting [tex]\(x_2 = 10\)[/tex] into [tex]\(2x_1 + 3x_2 = 48\)[/tex], we get:
[tex]\(2x_1 + 3(10) = 48\)[/tex]
[tex]\(2x_1 + 30 = 48\)[/tex]
[tex]\(2x_1 = 18\)[/tex]
[tex]\(x_1 = 9\)[/tex]
So the vertex is (9, 10).
[tex]\(Z = 4(9) + 8(10) = 36 + 80 = 116\)[/tex]
- Vertex at the intersection of [tex]\(x_1 = 0\)[/tex] and [tex]\(x_2 = 10\)[/tex]:
So the vertex is (0, 10).
[tex]\(Z = 4(0) + 8(10) = 0 + 80 = 80\)[/tex]
- Vertex at the intersection of [tex]\(x_2 = 0\)[/tex] and [tex]\(x_1 = 15\)[/tex]:
So the vertex is (15, 0).
[tex]\(Z = 4(15) + 0 = 60\)[/tex]
4. Determine the Maximum Value:
From the above calculations, the objective function [tex]\(Z\)[/tex] achieves its maximum value at the vertex (9, 10).
Therefore, the optimal solution is:
- [tex]\(x_1 = 9\)[/tex]
- [tex]\(x_2 = 10\)[/tex]
- [tex]\(Z_{\max} = 116\)[/tex]
Thus, the maximum value of the objective function [tex]\(Z = 4x_1 + 8x_2\)[/tex] under the given constraints is [tex]\(116\)[/tex], achieved at [tex]\(x_1 = 9\)[/tex] and [tex]\(x_2 = 10\)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.