Discover how IDNLearn.com can help you find the answers you need quickly and easily. Discover comprehensive answers to your questions from our community of experienced professionals.
Sagot :
Certainly, let's solve the given linear programming problem step-by-step.
### Problem Statement:
Maximize the objective function:
[tex]\[ Z = 4x_1 + 8x_2 \][/tex]
Subject to the constraints:
1. [tex]\( 2x_1 + 3x_2 \leq 48 \)[/tex]
2. [tex]\( x_1 \leq 15 \)[/tex]
3. [tex]\( x_2 \leq 10 \)[/tex]
4. [tex]\( x_1 \geq 0 \)[/tex]
5. [tex]\( x_2 \geq 0 \)[/tex]
### Step 1: Formulate the inequalities
We need to graph the inequalities and identify the feasible region.
1. [tex]\( 2x_1 + 3x_2 \leq 48 \)[/tex]
2. [tex]\( x_1 \leq 15 \)[/tex]
3. [tex]\( x_2 \leq 10 \)[/tex]
4. [tex]\( x_1 \geq 0 \)[/tex]
5. [tex]\( x_2 \geq 0 \)[/tex]
### Step 2: Identify the corner points
We need to find the points of intersection of the lines representing the constraints.
1. For [tex]\( 2x_1 + 3x_2 = 48 \)[/tex] and [tex]\( x_1 = 0 \)[/tex]:
[tex]\[ 2(0) + 3x_2 = 48 \implies x_2 = 16 \implies (0, 16) \][/tex]
2. For [tex]\( 2x_1 + 3x_2 = 48 \)[/tex] and [tex]\( x_2 = 0 \)[/tex]:
[tex]\[ 2x_1 + 3(0) = 48 \implies x_1 = 24 \implies (24, 0) \][/tex]
3. For [tex]\( x_1 = 15 \)[/tex] and [tex]\( x_1 = 15 \)[/tex]:
[tex]\[ (15, 0) \][/tex]
4. For [tex]\( x_2 = 10 \)[/tex] and [tex]\( x_2 = 10 \)[/tex]:
[tex]\[ (0, 10) \][/tex]
5. For the intersection of [tex]\( 2x_1 + 3x_2 = 48 \)[/tex], [tex]\( x_1 \leq 15 \)[/tex] and [tex]\( x_2 \leq 10 \)[/tex]:
Plug [tex]\( x_1 = 15 \)[/tex] into [tex]\( 2x_1 + 3x_2 = 48 \)[/tex]:
[tex]\[ 2(15) + 3x_2 = 48 \implies 30 + 3x_2 = 48 \implies 3x_2 = 18 \implies x_2 = 6 \implies (15, 6) \][/tex]
6. For the intersection of [tex]\( 2x_1 + 3x_2 = 48 \)[/tex], [tex]\( x_2 \leq 10 \)[/tex]:
[tex]\[ x_2 = 10 \implies 2x_1 + 3(10) = 48 \implies 2x_1 + 30 = 48 \implies 2x_1 = 18 \implies x_1 = 9 \implies (9, 10) \][/tex]
### Step 3: Evaluate the objective function at each corner point
1. At [tex]\( (0, 10) \)[/tex]:
[tex]\[ Z = 4(0) + 8(10) = 80 \][/tex]
2. At [tex]\( (9, 10) \)[/tex]:
[tex]\[ Z = 4(9) + 8(10) = 36 + 80 = 116 \][/tex]
3. At [tex]\( (15, 6) \)[/tex]:
[tex]\[ Z = 4(15) + 8(6) = 60 + 48 = 108 \][/tex]
4. At [tex]\( (15, 0) \)[/tex]:
[tex]\[ Z = 4(15) + 8(0) = 60 \][/tex]
5. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ Z = 4(0) + 8(0) = 0 \][/tex]
### Step 4: Choose the maximum value
Comparing all the Z values, the maximum value of [tex]\( Z \)[/tex] is at the point [tex]\( (9, 10) \)[/tex] with [tex]\( Z = 116 \)[/tex].
### Conclusion
The optimal solution to maximize the objective function [tex]\( Z = 4x_1 + 8x_2 \)[/tex] under the given constraints is:
[tex]\[ x_1 = 9, \quad x_2 = 10, \quad \text{and} \quad Z_{\max} = 116 \][/tex]
Thus, the optimal values are [tex]\( x_1 = 9 \)[/tex], [tex]\( x_2 = 10 \)[/tex], giving a maximum objective function value of [tex]\( Z = 116 \)[/tex].
### Problem Statement:
Maximize the objective function:
[tex]\[ Z = 4x_1 + 8x_2 \][/tex]
Subject to the constraints:
1. [tex]\( 2x_1 + 3x_2 \leq 48 \)[/tex]
2. [tex]\( x_1 \leq 15 \)[/tex]
3. [tex]\( x_2 \leq 10 \)[/tex]
4. [tex]\( x_1 \geq 0 \)[/tex]
5. [tex]\( x_2 \geq 0 \)[/tex]
### Step 1: Formulate the inequalities
We need to graph the inequalities and identify the feasible region.
1. [tex]\( 2x_1 + 3x_2 \leq 48 \)[/tex]
2. [tex]\( x_1 \leq 15 \)[/tex]
3. [tex]\( x_2 \leq 10 \)[/tex]
4. [tex]\( x_1 \geq 0 \)[/tex]
5. [tex]\( x_2 \geq 0 \)[/tex]
### Step 2: Identify the corner points
We need to find the points of intersection of the lines representing the constraints.
1. For [tex]\( 2x_1 + 3x_2 = 48 \)[/tex] and [tex]\( x_1 = 0 \)[/tex]:
[tex]\[ 2(0) + 3x_2 = 48 \implies x_2 = 16 \implies (0, 16) \][/tex]
2. For [tex]\( 2x_1 + 3x_2 = 48 \)[/tex] and [tex]\( x_2 = 0 \)[/tex]:
[tex]\[ 2x_1 + 3(0) = 48 \implies x_1 = 24 \implies (24, 0) \][/tex]
3. For [tex]\( x_1 = 15 \)[/tex] and [tex]\( x_1 = 15 \)[/tex]:
[tex]\[ (15, 0) \][/tex]
4. For [tex]\( x_2 = 10 \)[/tex] and [tex]\( x_2 = 10 \)[/tex]:
[tex]\[ (0, 10) \][/tex]
5. For the intersection of [tex]\( 2x_1 + 3x_2 = 48 \)[/tex], [tex]\( x_1 \leq 15 \)[/tex] and [tex]\( x_2 \leq 10 \)[/tex]:
Plug [tex]\( x_1 = 15 \)[/tex] into [tex]\( 2x_1 + 3x_2 = 48 \)[/tex]:
[tex]\[ 2(15) + 3x_2 = 48 \implies 30 + 3x_2 = 48 \implies 3x_2 = 18 \implies x_2 = 6 \implies (15, 6) \][/tex]
6. For the intersection of [tex]\( 2x_1 + 3x_2 = 48 \)[/tex], [tex]\( x_2 \leq 10 \)[/tex]:
[tex]\[ x_2 = 10 \implies 2x_1 + 3(10) = 48 \implies 2x_1 + 30 = 48 \implies 2x_1 = 18 \implies x_1 = 9 \implies (9, 10) \][/tex]
### Step 3: Evaluate the objective function at each corner point
1. At [tex]\( (0, 10) \)[/tex]:
[tex]\[ Z = 4(0) + 8(10) = 80 \][/tex]
2. At [tex]\( (9, 10) \)[/tex]:
[tex]\[ Z = 4(9) + 8(10) = 36 + 80 = 116 \][/tex]
3. At [tex]\( (15, 6) \)[/tex]:
[tex]\[ Z = 4(15) + 8(6) = 60 + 48 = 108 \][/tex]
4. At [tex]\( (15, 0) \)[/tex]:
[tex]\[ Z = 4(15) + 8(0) = 60 \][/tex]
5. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ Z = 4(0) + 8(0) = 0 \][/tex]
### Step 4: Choose the maximum value
Comparing all the Z values, the maximum value of [tex]\( Z \)[/tex] is at the point [tex]\( (9, 10) \)[/tex] with [tex]\( Z = 116 \)[/tex].
### Conclusion
The optimal solution to maximize the objective function [tex]\( Z = 4x_1 + 8x_2 \)[/tex] under the given constraints is:
[tex]\[ x_1 = 9, \quad x_2 = 10, \quad \text{and} \quad Z_{\max} = 116 \][/tex]
Thus, the optimal values are [tex]\( x_1 = 9 \)[/tex], [tex]\( x_2 = 10 \)[/tex], giving a maximum objective function value of [tex]\( Z = 116 \)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.