Get the information you need quickly and easily with IDNLearn.com. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.
Sagot :
Certainly, let's solve the given linear programming problem step-by-step.
### Problem Statement:
Maximize the objective function:
[tex]\[ Z = 4x_1 + 8x_2 \][/tex]
Subject to the constraints:
1. [tex]\( 2x_1 + 3x_2 \leq 48 \)[/tex]
2. [tex]\( x_1 \leq 15 \)[/tex]
3. [tex]\( x_2 \leq 10 \)[/tex]
4. [tex]\( x_1 \geq 0 \)[/tex]
5. [tex]\( x_2 \geq 0 \)[/tex]
### Step 1: Formulate the inequalities
We need to graph the inequalities and identify the feasible region.
1. [tex]\( 2x_1 + 3x_2 \leq 48 \)[/tex]
2. [tex]\( x_1 \leq 15 \)[/tex]
3. [tex]\( x_2 \leq 10 \)[/tex]
4. [tex]\( x_1 \geq 0 \)[/tex]
5. [tex]\( x_2 \geq 0 \)[/tex]
### Step 2: Identify the corner points
We need to find the points of intersection of the lines representing the constraints.
1. For [tex]\( 2x_1 + 3x_2 = 48 \)[/tex] and [tex]\( x_1 = 0 \)[/tex]:
[tex]\[ 2(0) + 3x_2 = 48 \implies x_2 = 16 \implies (0, 16) \][/tex]
2. For [tex]\( 2x_1 + 3x_2 = 48 \)[/tex] and [tex]\( x_2 = 0 \)[/tex]:
[tex]\[ 2x_1 + 3(0) = 48 \implies x_1 = 24 \implies (24, 0) \][/tex]
3. For [tex]\( x_1 = 15 \)[/tex] and [tex]\( x_1 = 15 \)[/tex]:
[tex]\[ (15, 0) \][/tex]
4. For [tex]\( x_2 = 10 \)[/tex] and [tex]\( x_2 = 10 \)[/tex]:
[tex]\[ (0, 10) \][/tex]
5. For the intersection of [tex]\( 2x_1 + 3x_2 = 48 \)[/tex], [tex]\( x_1 \leq 15 \)[/tex] and [tex]\( x_2 \leq 10 \)[/tex]:
Plug [tex]\( x_1 = 15 \)[/tex] into [tex]\( 2x_1 + 3x_2 = 48 \)[/tex]:
[tex]\[ 2(15) + 3x_2 = 48 \implies 30 + 3x_2 = 48 \implies 3x_2 = 18 \implies x_2 = 6 \implies (15, 6) \][/tex]
6. For the intersection of [tex]\( 2x_1 + 3x_2 = 48 \)[/tex], [tex]\( x_2 \leq 10 \)[/tex]:
[tex]\[ x_2 = 10 \implies 2x_1 + 3(10) = 48 \implies 2x_1 + 30 = 48 \implies 2x_1 = 18 \implies x_1 = 9 \implies (9, 10) \][/tex]
### Step 3: Evaluate the objective function at each corner point
1. At [tex]\( (0, 10) \)[/tex]:
[tex]\[ Z = 4(0) + 8(10) = 80 \][/tex]
2. At [tex]\( (9, 10) \)[/tex]:
[tex]\[ Z = 4(9) + 8(10) = 36 + 80 = 116 \][/tex]
3. At [tex]\( (15, 6) \)[/tex]:
[tex]\[ Z = 4(15) + 8(6) = 60 + 48 = 108 \][/tex]
4. At [tex]\( (15, 0) \)[/tex]:
[tex]\[ Z = 4(15) + 8(0) = 60 \][/tex]
5. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ Z = 4(0) + 8(0) = 0 \][/tex]
### Step 4: Choose the maximum value
Comparing all the Z values, the maximum value of [tex]\( Z \)[/tex] is at the point [tex]\( (9, 10) \)[/tex] with [tex]\( Z = 116 \)[/tex].
### Conclusion
The optimal solution to maximize the objective function [tex]\( Z = 4x_1 + 8x_2 \)[/tex] under the given constraints is:
[tex]\[ x_1 = 9, \quad x_2 = 10, \quad \text{and} \quad Z_{\max} = 116 \][/tex]
Thus, the optimal values are [tex]\( x_1 = 9 \)[/tex], [tex]\( x_2 = 10 \)[/tex], giving a maximum objective function value of [tex]\( Z = 116 \)[/tex].
### Problem Statement:
Maximize the objective function:
[tex]\[ Z = 4x_1 + 8x_2 \][/tex]
Subject to the constraints:
1. [tex]\( 2x_1 + 3x_2 \leq 48 \)[/tex]
2. [tex]\( x_1 \leq 15 \)[/tex]
3. [tex]\( x_2 \leq 10 \)[/tex]
4. [tex]\( x_1 \geq 0 \)[/tex]
5. [tex]\( x_2 \geq 0 \)[/tex]
### Step 1: Formulate the inequalities
We need to graph the inequalities and identify the feasible region.
1. [tex]\( 2x_1 + 3x_2 \leq 48 \)[/tex]
2. [tex]\( x_1 \leq 15 \)[/tex]
3. [tex]\( x_2 \leq 10 \)[/tex]
4. [tex]\( x_1 \geq 0 \)[/tex]
5. [tex]\( x_2 \geq 0 \)[/tex]
### Step 2: Identify the corner points
We need to find the points of intersection of the lines representing the constraints.
1. For [tex]\( 2x_1 + 3x_2 = 48 \)[/tex] and [tex]\( x_1 = 0 \)[/tex]:
[tex]\[ 2(0) + 3x_2 = 48 \implies x_2 = 16 \implies (0, 16) \][/tex]
2. For [tex]\( 2x_1 + 3x_2 = 48 \)[/tex] and [tex]\( x_2 = 0 \)[/tex]:
[tex]\[ 2x_1 + 3(0) = 48 \implies x_1 = 24 \implies (24, 0) \][/tex]
3. For [tex]\( x_1 = 15 \)[/tex] and [tex]\( x_1 = 15 \)[/tex]:
[tex]\[ (15, 0) \][/tex]
4. For [tex]\( x_2 = 10 \)[/tex] and [tex]\( x_2 = 10 \)[/tex]:
[tex]\[ (0, 10) \][/tex]
5. For the intersection of [tex]\( 2x_1 + 3x_2 = 48 \)[/tex], [tex]\( x_1 \leq 15 \)[/tex] and [tex]\( x_2 \leq 10 \)[/tex]:
Plug [tex]\( x_1 = 15 \)[/tex] into [tex]\( 2x_1 + 3x_2 = 48 \)[/tex]:
[tex]\[ 2(15) + 3x_2 = 48 \implies 30 + 3x_2 = 48 \implies 3x_2 = 18 \implies x_2 = 6 \implies (15, 6) \][/tex]
6. For the intersection of [tex]\( 2x_1 + 3x_2 = 48 \)[/tex], [tex]\( x_2 \leq 10 \)[/tex]:
[tex]\[ x_2 = 10 \implies 2x_1 + 3(10) = 48 \implies 2x_1 + 30 = 48 \implies 2x_1 = 18 \implies x_1 = 9 \implies (9, 10) \][/tex]
### Step 3: Evaluate the objective function at each corner point
1. At [tex]\( (0, 10) \)[/tex]:
[tex]\[ Z = 4(0) + 8(10) = 80 \][/tex]
2. At [tex]\( (9, 10) \)[/tex]:
[tex]\[ Z = 4(9) + 8(10) = 36 + 80 = 116 \][/tex]
3. At [tex]\( (15, 6) \)[/tex]:
[tex]\[ Z = 4(15) + 8(6) = 60 + 48 = 108 \][/tex]
4. At [tex]\( (15, 0) \)[/tex]:
[tex]\[ Z = 4(15) + 8(0) = 60 \][/tex]
5. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ Z = 4(0) + 8(0) = 0 \][/tex]
### Step 4: Choose the maximum value
Comparing all the Z values, the maximum value of [tex]\( Z \)[/tex] is at the point [tex]\( (9, 10) \)[/tex] with [tex]\( Z = 116 \)[/tex].
### Conclusion
The optimal solution to maximize the objective function [tex]\( Z = 4x_1 + 8x_2 \)[/tex] under the given constraints is:
[tex]\[ x_1 = 9, \quad x_2 = 10, \quad \text{and} \quad Z_{\max} = 116 \][/tex]
Thus, the optimal values are [tex]\( x_1 = 9 \)[/tex], [tex]\( x_2 = 10 \)[/tex], giving a maximum objective function value of [tex]\( Z = 116 \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.