Get personalized answers to your unique questions on IDNLearn.com. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
To determine the binding energy of a mole of nuclei with a given mass defect, we will use Einstein's famous mass-energy equivalence formula:
[tex]\[ E = mc^2 \][/tex]
where:
- [tex]\( E \)[/tex] is the energy,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( c \)[/tex] is the speed of light in a vacuum (approximately [tex]\( 3 \times 10^8 \)[/tex] meters per second).
Given:
- Mass defect, [tex]\( m = 0.00084 \)[/tex] kilograms per mole,
- Speed of light, [tex]\( c = 3 \times 10^8 \)[/tex] meters per second.
Let's compute the binding energy, [tex]\( E \)[/tex]:
[tex]\[ E = mc^2 \][/tex]
Substitute the given values:
[tex]\[ E = (0.00084 \text{ kg/mol}) \times (3 \times 10^8 \text{ m/s})^2 \][/tex]
First, compute the speed of light squared:
[tex]\[ (3 \times 10^8)^2 = 9 \times 10^{16} \text{ (m/s)}^2 \][/tex]
Now, multiply this with the mass defect:
[tex]\[ E = 0.00084 \text{ kg/mol} \times 9 \times 10^{16} \text{ J/kg} \][/tex]
[tex]\[ E = 0.00084 \times 9 \times 10^{16} \text{ J/mol} \][/tex]
[tex]\[ E = 7.56 \times 10^{13} \text{ J/mol} \][/tex]
Therefore, the binding energy of a mole of nuclei with a mass defect of 0.00084 kilograms per mole is:
[tex]\[ \boxed{7.56 \times 10^{13} \text{ J/mol}} \][/tex]
So, the correct answer is:
[tex]\[ \text{B. } 7.56 \times 10^{13} \text{ J/mol} \][/tex]
[tex]\[ E = mc^2 \][/tex]
where:
- [tex]\( E \)[/tex] is the energy,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( c \)[/tex] is the speed of light in a vacuum (approximately [tex]\( 3 \times 10^8 \)[/tex] meters per second).
Given:
- Mass defect, [tex]\( m = 0.00084 \)[/tex] kilograms per mole,
- Speed of light, [tex]\( c = 3 \times 10^8 \)[/tex] meters per second.
Let's compute the binding energy, [tex]\( E \)[/tex]:
[tex]\[ E = mc^2 \][/tex]
Substitute the given values:
[tex]\[ E = (0.00084 \text{ kg/mol}) \times (3 \times 10^8 \text{ m/s})^2 \][/tex]
First, compute the speed of light squared:
[tex]\[ (3 \times 10^8)^2 = 9 \times 10^{16} \text{ (m/s)}^2 \][/tex]
Now, multiply this with the mass defect:
[tex]\[ E = 0.00084 \text{ kg/mol} \times 9 \times 10^{16} \text{ J/kg} \][/tex]
[tex]\[ E = 0.00084 \times 9 \times 10^{16} \text{ J/mol} \][/tex]
[tex]\[ E = 7.56 \times 10^{13} \text{ J/mol} \][/tex]
Therefore, the binding energy of a mole of nuclei with a mass defect of 0.00084 kilograms per mole is:
[tex]\[ \boxed{7.56 \times 10^{13} \text{ J/mol}} \][/tex]
So, the correct answer is:
[tex]\[ \text{B. } 7.56 \times 10^{13} \text{ J/mol} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.