Discover new information and insights with the help of IDNLearn.com. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.

What is the binding energy of a mole of nuclei with a mass defect of [tex]0.00084 \, \text{kg/mol}[/tex]?

A. [tex]2.52 \times 10^8 \, \text{J/mol}[/tex]

B. [tex]7.56 \times 10^{13} \, \text{J/mol}[/tex]

C. [tex]7.56 \times 10^{16} \, \text{J/mol}[/tex]

D. [tex]2.52 \times 10^5 \, \text{J/mol}[/tex]


Sagot :

To determine the binding energy of a mole of nuclei with a given mass defect, we will use Einstein's famous mass-energy equivalence formula:

[tex]\[ E = mc^2 \][/tex]

where:
- [tex]\( E \)[/tex] is the energy,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( c \)[/tex] is the speed of light in a vacuum (approximately [tex]\( 3 \times 10^8 \)[/tex] meters per second).

Given:
- Mass defect, [tex]\( m = 0.00084 \)[/tex] kilograms per mole,
- Speed of light, [tex]\( c = 3 \times 10^8 \)[/tex] meters per second.

Let's compute the binding energy, [tex]\( E \)[/tex]:

[tex]\[ E = mc^2 \][/tex]

Substitute the given values:

[tex]\[ E = (0.00084 \text{ kg/mol}) \times (3 \times 10^8 \text{ m/s})^2 \][/tex]

First, compute the speed of light squared:

[tex]\[ (3 \times 10^8)^2 = 9 \times 10^{16} \text{ (m/s)}^2 \][/tex]

Now, multiply this with the mass defect:

[tex]\[ E = 0.00084 \text{ kg/mol} \times 9 \times 10^{16} \text{ J/kg} \][/tex]

[tex]\[ E = 0.00084 \times 9 \times 10^{16} \text{ J/mol} \][/tex]

[tex]\[ E = 7.56 \times 10^{13} \text{ J/mol} \][/tex]

Therefore, the binding energy of a mole of nuclei with a mass defect of 0.00084 kilograms per mole is:

[tex]\[ \boxed{7.56 \times 10^{13} \text{ J/mol}} \][/tex]

So, the correct answer is:
[tex]\[ \text{B. } 7.56 \times 10^{13} \text{ J/mol} \][/tex]