IDNLearn.com provides a collaborative platform for sharing and gaining knowledge. Discover comprehensive answers to your questions from our community of experienced professionals.
Sagot :
To determine the binding energy of a mole of nuclei with a given mass defect, we will use Einstein's famous mass-energy equivalence formula:
[tex]\[ E = mc^2 \][/tex]
where:
- [tex]\( E \)[/tex] is the energy,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( c \)[/tex] is the speed of light in a vacuum (approximately [tex]\( 3 \times 10^8 \)[/tex] meters per second).
Given:
- Mass defect, [tex]\( m = 0.00084 \)[/tex] kilograms per mole,
- Speed of light, [tex]\( c = 3 \times 10^8 \)[/tex] meters per second.
Let's compute the binding energy, [tex]\( E \)[/tex]:
[tex]\[ E = mc^2 \][/tex]
Substitute the given values:
[tex]\[ E = (0.00084 \text{ kg/mol}) \times (3 \times 10^8 \text{ m/s})^2 \][/tex]
First, compute the speed of light squared:
[tex]\[ (3 \times 10^8)^2 = 9 \times 10^{16} \text{ (m/s)}^2 \][/tex]
Now, multiply this with the mass defect:
[tex]\[ E = 0.00084 \text{ kg/mol} \times 9 \times 10^{16} \text{ J/kg} \][/tex]
[tex]\[ E = 0.00084 \times 9 \times 10^{16} \text{ J/mol} \][/tex]
[tex]\[ E = 7.56 \times 10^{13} \text{ J/mol} \][/tex]
Therefore, the binding energy of a mole of nuclei with a mass defect of 0.00084 kilograms per mole is:
[tex]\[ \boxed{7.56 \times 10^{13} \text{ J/mol}} \][/tex]
So, the correct answer is:
[tex]\[ \text{B. } 7.56 \times 10^{13} \text{ J/mol} \][/tex]
[tex]\[ E = mc^2 \][/tex]
where:
- [tex]\( E \)[/tex] is the energy,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( c \)[/tex] is the speed of light in a vacuum (approximately [tex]\( 3 \times 10^8 \)[/tex] meters per second).
Given:
- Mass defect, [tex]\( m = 0.00084 \)[/tex] kilograms per mole,
- Speed of light, [tex]\( c = 3 \times 10^8 \)[/tex] meters per second.
Let's compute the binding energy, [tex]\( E \)[/tex]:
[tex]\[ E = mc^2 \][/tex]
Substitute the given values:
[tex]\[ E = (0.00084 \text{ kg/mol}) \times (3 \times 10^8 \text{ m/s})^2 \][/tex]
First, compute the speed of light squared:
[tex]\[ (3 \times 10^8)^2 = 9 \times 10^{16} \text{ (m/s)}^2 \][/tex]
Now, multiply this with the mass defect:
[tex]\[ E = 0.00084 \text{ kg/mol} \times 9 \times 10^{16} \text{ J/kg} \][/tex]
[tex]\[ E = 0.00084 \times 9 \times 10^{16} \text{ J/mol} \][/tex]
[tex]\[ E = 7.56 \times 10^{13} \text{ J/mol} \][/tex]
Therefore, the binding energy of a mole of nuclei with a mass defect of 0.00084 kilograms per mole is:
[tex]\[ \boxed{7.56 \times 10^{13} \text{ J/mol}} \][/tex]
So, the correct answer is:
[tex]\[ \text{B. } 7.56 \times 10^{13} \text{ J/mol} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.