IDNLearn.com makes it easy to find answers and share knowledge with others. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.
Sagot :
Let's solve the given limits step-by-step using L'Hôpital's Rule.
### (i) [tex]\(\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan^2 x}{\sec^3 x}\)[/tex]
First, we will simplify the expression:
The tangent and secant functions can be rewritten in terms of sine and cosine:
[tex]\[ \tan x = \frac{\sin x}{\cos x} \quad \text{and} \quad \sec x = \frac{1}{\cos x} \][/tex]
So,
[tex]\[ \frac{\tan^2 x}{\sec^3 x} = \frac{\left( \frac{\sin x}{\cos x} \right)^2}{\left( \frac{1}{\cos x} \right)^3} = \frac{\frac{\sin^2 x}{\cos^2 x}}{\frac{1}{\cos^3 x}} = \frac{\sin^2 x}{\cos^2 x} \times \cos^3 x = \sin^2 x \cos x \][/tex]
Now, we need to find the limit:
[tex]\[ \lim_{x \rightarrow \frac{\pi}{2}^{-}} \sin^2 x \cos x \][/tex]
As [tex]\(x\)[/tex] approaches [tex]\(\frac{\pi}{2}\)[/tex] from the left, [tex]\(\sin x\)[/tex] approaches 1 and [tex]\(\cos x\)[/tex] approaches 0 from the positive side. Therefore,
[tex]\[ \sin^2 x \to 1 \quad \text{and} \quad \cos x \to 0 \][/tex]
Thus,
[tex]\[ \lim_{x \rightarrow \frac{\pi}{2}^{-}} \sin^2 x \cos x = 1 \cdot 0 = 0 \][/tex]
So the limit is:
[tex]\[ \boxed{0} \][/tex]
### (ii) [tex]\(\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x+x^{3/2}}\)[/tex]
This is an indeterminate form of type [tex]\(\frac{0}{0}\)[/tex]. Therefore, we can apply L'Hôpital's Rule, which states that:
[tex]\[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \quad \text{if the limit on the right-hand side exists} \][/tex]
Given:
[tex]\[ f(x) = \sin x \quad \text{and} \quad g(x) = x + x^{3/2} \][/tex]
Let's compute their derivatives:
[tex]\[ f'(x) = \cos x \][/tex]
[tex]\[ g'(x) = 1 + \frac{3}{2} x^{1/2} \][/tex]
Therefore, applying L'Hôpital's Rule:
[tex]\[ \lim_{x \rightarrow 0^{+}} \frac{\sin x}{x + x^{3/2}} = \lim_{x \rightarrow 0^{+}} \frac{\cos x}{1 + \frac{3}{2} x^{1/2}} \][/tex]
Now, let's evaluate this limit.
As [tex]\(x\)[/tex] approaches 0 from the right, [tex]\(\cos x\)[/tex] approaches 1 and [tex]\(\frac{3}{2} x^{1/2}\)[/tex] approaches 0. Thus,
[tex]\[ \lim_{x \rightarrow 0^{+}} \frac{1}{1 + 0} = 1 \][/tex]
Hence, the limit is:
[tex]\[ \boxed{1} \][/tex]
In conclusion:
(i) [tex]\(\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan^2 x}{\sec^3 x} = 0\)[/tex]
(ii) [tex]\(\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x+x^{3 / 2}} = 1\)[/tex]
### (i) [tex]\(\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan^2 x}{\sec^3 x}\)[/tex]
First, we will simplify the expression:
The tangent and secant functions can be rewritten in terms of sine and cosine:
[tex]\[ \tan x = \frac{\sin x}{\cos x} \quad \text{and} \quad \sec x = \frac{1}{\cos x} \][/tex]
So,
[tex]\[ \frac{\tan^2 x}{\sec^3 x} = \frac{\left( \frac{\sin x}{\cos x} \right)^2}{\left( \frac{1}{\cos x} \right)^3} = \frac{\frac{\sin^2 x}{\cos^2 x}}{\frac{1}{\cos^3 x}} = \frac{\sin^2 x}{\cos^2 x} \times \cos^3 x = \sin^2 x \cos x \][/tex]
Now, we need to find the limit:
[tex]\[ \lim_{x \rightarrow \frac{\pi}{2}^{-}} \sin^2 x \cos x \][/tex]
As [tex]\(x\)[/tex] approaches [tex]\(\frac{\pi}{2}\)[/tex] from the left, [tex]\(\sin x\)[/tex] approaches 1 and [tex]\(\cos x\)[/tex] approaches 0 from the positive side. Therefore,
[tex]\[ \sin^2 x \to 1 \quad \text{and} \quad \cos x \to 0 \][/tex]
Thus,
[tex]\[ \lim_{x \rightarrow \frac{\pi}{2}^{-}} \sin^2 x \cos x = 1 \cdot 0 = 0 \][/tex]
So the limit is:
[tex]\[ \boxed{0} \][/tex]
### (ii) [tex]\(\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x+x^{3/2}}\)[/tex]
This is an indeterminate form of type [tex]\(\frac{0}{0}\)[/tex]. Therefore, we can apply L'Hôpital's Rule, which states that:
[tex]\[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \quad \text{if the limit on the right-hand side exists} \][/tex]
Given:
[tex]\[ f(x) = \sin x \quad \text{and} \quad g(x) = x + x^{3/2} \][/tex]
Let's compute their derivatives:
[tex]\[ f'(x) = \cos x \][/tex]
[tex]\[ g'(x) = 1 + \frac{3}{2} x^{1/2} \][/tex]
Therefore, applying L'Hôpital's Rule:
[tex]\[ \lim_{x \rightarrow 0^{+}} \frac{\sin x}{x + x^{3/2}} = \lim_{x \rightarrow 0^{+}} \frac{\cos x}{1 + \frac{3}{2} x^{1/2}} \][/tex]
Now, let's evaluate this limit.
As [tex]\(x\)[/tex] approaches 0 from the right, [tex]\(\cos x\)[/tex] approaches 1 and [tex]\(\frac{3}{2} x^{1/2}\)[/tex] approaches 0. Thus,
[tex]\[ \lim_{x \rightarrow 0^{+}} \frac{1}{1 + 0} = 1 \][/tex]
Hence, the limit is:
[tex]\[ \boxed{1} \][/tex]
In conclusion:
(i) [tex]\(\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan^2 x}{\sec^3 x} = 0\)[/tex]
(ii) [tex]\(\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x+x^{3 / 2}} = 1\)[/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.