Experience the convenience of getting your questions answered at IDNLearn.com. Our Q&A platform offers reliable and thorough answers to ensure you have the information you need to succeed in any situation.
Sagot :
Let's break this down step by step.
First, we are given that the original quadratic equation [tex]\( f(x) = 4x^2 - 3x - 5 \)[/tex] has roots [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex].
### Part (a)
We need to form a new equation that has roots [tex]\(\frac{2\alpha}{\beta}\)[/tex] and [tex]\(\frac{2\beta}{\alpha}\)[/tex].
1. Sum of the new roots:
[tex]\[ S = \frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} \][/tex]
2. Product of the new roots:
[tex]\[ P = \left( \frac{2\alpha}{\beta} \right) \left( \frac{2\beta}{\alpha} \right) = 4 \][/tex]
Thus, we can write the quadratic equation with these roots as:
[tex]\[ g(x) = x^2 - Sx + P \][/tex]
Substituting the sum and the product of the new roots:
[tex]\[ S = \frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} \][/tex]
The simplified form of the sum [tex]\(\frac{2\alpha}{\beta} + \frac{2\beta}{\alpha}\)[/tex] is simply [tex]\(S\)[/tex].
Thus
[tex]\[ g(x) = x^2 - \left( \frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} \right)x + 4 \][/tex]
Given that the new equation has integer coefficients and should be of the form [tex]\(g(x)=4x^2+px+q\)[/tex], we need to multiply the entire equation by 4
[tex]\[ 4g(x) = 4x^2 - 4\left(\frac{2\alpha}{\beta} + \frac{2\beta}{\alpha}\right)x + 16 \][/tex]
Thus the simplified form is:
[tex]\[ g(x) = 4x^2 - \left(4\frac{2\alpha}{\beta} + 4\frac{2\beta}{\alpha}\right)x + 16 \][/tex]
Now we have:
[tex]\[ p = 4\left( \frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} \right) x \quad \text{and} \quad q = 16 \][/tex]
### Part (b)
We also know that this new equation [tex]\( g(x) = 4x^2 + px + q \)[/tex] has roots [tex]\( 3\alpha + \beta \)[/tex] and [tex]\( \alpha + 3\beta \)[/tex].
1. Sum of these new roots:
[tex]\[ p = -( (3\alpha + \beta) + (\alpha + 3\beta) ) = -4(\alpha + \beta) \][/tex]
2. Product of these new roots:
[tex]\[ q = (3\alpha + \beta)(\alpha + 3\beta) \][/tex]
Here,
[tex]\[ p = -4(\alpha + \beta) \][/tex]
And solving the product:
[tex]\[ q = (\alpha + 3\beta)(3\alpha + \beta) = 3\alpha^2 + 3\alpha\beta + \beta\alpha + 3\beta^2 \][/tex]
Rewritten:
[tex]\[ q = (3\alpha \beta+\alpha +3(3\alpha \beta) + \beta) \][/tex]
We can conclude resulting the product:
[tex]\[ q = (\alpha + 3\beta) *(\beta + 3\alpha) = (\alpha \beta)^2 + 6 \alpha \beta + 9 \alpha \beta = \][/tex]
So the coefficients of [tex]\( g(x) = 4x^2 + px + q \)[/tex] are:
[tex]\[ p = -4\alpha - 4\beta \quad ,q = (\alpha+3\beta)(3\alpha+\beta) \][/tex]
In short, the values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are:
[tex]\[ p = -4(\alpha + \beta), \quad q = (\alpha + 3\beta)(3\alpha + \beta) \][/tex]
First, we are given that the original quadratic equation [tex]\( f(x) = 4x^2 - 3x - 5 \)[/tex] has roots [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex].
### Part (a)
We need to form a new equation that has roots [tex]\(\frac{2\alpha}{\beta}\)[/tex] and [tex]\(\frac{2\beta}{\alpha}\)[/tex].
1. Sum of the new roots:
[tex]\[ S = \frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} \][/tex]
2. Product of the new roots:
[tex]\[ P = \left( \frac{2\alpha}{\beta} \right) \left( \frac{2\beta}{\alpha} \right) = 4 \][/tex]
Thus, we can write the quadratic equation with these roots as:
[tex]\[ g(x) = x^2 - Sx + P \][/tex]
Substituting the sum and the product of the new roots:
[tex]\[ S = \frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} \][/tex]
The simplified form of the sum [tex]\(\frac{2\alpha}{\beta} + \frac{2\beta}{\alpha}\)[/tex] is simply [tex]\(S\)[/tex].
Thus
[tex]\[ g(x) = x^2 - \left( \frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} \right)x + 4 \][/tex]
Given that the new equation has integer coefficients and should be of the form [tex]\(g(x)=4x^2+px+q\)[/tex], we need to multiply the entire equation by 4
[tex]\[ 4g(x) = 4x^2 - 4\left(\frac{2\alpha}{\beta} + \frac{2\beta}{\alpha}\right)x + 16 \][/tex]
Thus the simplified form is:
[tex]\[ g(x) = 4x^2 - \left(4\frac{2\alpha}{\beta} + 4\frac{2\beta}{\alpha}\right)x + 16 \][/tex]
Now we have:
[tex]\[ p = 4\left( \frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} \right) x \quad \text{and} \quad q = 16 \][/tex]
### Part (b)
We also know that this new equation [tex]\( g(x) = 4x^2 + px + q \)[/tex] has roots [tex]\( 3\alpha + \beta \)[/tex] and [tex]\( \alpha + 3\beta \)[/tex].
1. Sum of these new roots:
[tex]\[ p = -( (3\alpha + \beta) + (\alpha + 3\beta) ) = -4(\alpha + \beta) \][/tex]
2. Product of these new roots:
[tex]\[ q = (3\alpha + \beta)(\alpha + 3\beta) \][/tex]
Here,
[tex]\[ p = -4(\alpha + \beta) \][/tex]
And solving the product:
[tex]\[ q = (\alpha + 3\beta)(3\alpha + \beta) = 3\alpha^2 + 3\alpha\beta + \beta\alpha + 3\beta^2 \][/tex]
Rewritten:
[tex]\[ q = (3\alpha \beta+\alpha +3(3\alpha \beta) + \beta) \][/tex]
We can conclude resulting the product:
[tex]\[ q = (\alpha + 3\beta) *(\beta + 3\alpha) = (\alpha \beta)^2 + 6 \alpha \beta + 9 \alpha \beta = \][/tex]
So the coefficients of [tex]\( g(x) = 4x^2 + px + q \)[/tex] are:
[tex]\[ p = -4\alpha - 4\beta \quad ,q = (\alpha+3\beta)(3\alpha+\beta) \][/tex]
In short, the values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are:
[tex]\[ p = -4(\alpha + \beta), \quad q = (\alpha + 3\beta)(3\alpha + \beta) \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.