Get detailed and accurate responses to your questions with IDNLearn.com. Join our Q&A platform to receive prompt and accurate responses from knowledgeable professionals in various fields.
Sagot :
To find the sums and values requested, let's break down each part of the problem step-by-step.
### Sum of the Series 1 + 1/3 + 1/6 + 1/10 + ... up to 20 Terms
We need to find the sum of the first 20 terms of the series:
[tex]\[ S = 1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \ldots \][/tex]
Let's analyze the pattern. Each term in the series can be written in the form:
[tex]\[ \frac{1}{\frac{n(n+1)}{2}} = \frac{2}{n(n+1)} \][/tex]
where [tex]\( n \)[/tex] is the term's index.
The sum of the first 20 terms is obtained by adding each term up:
[tex]\[ S = \sum_{n=1}^{20} \frac{2}{n(n+1)} \][/tex]
### Value of [tex]\( 1 - \left[ \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \ldots + \frac{1}{2009 \times 2010} \right] \)[/tex]
Here, we need to find the series:
[tex]\[ \sum_{n=1}^{2009} \frac{1}{n(n+1)} \][/tex]
We know:
[tex]\[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \][/tex]
This series is telescoping, meaning most terms cancel out:
[tex]\[ \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \ldots + \left(\frac{1}{2009} - \frac{1}{2010} \right) \][/tex]
After cancellation, we are left with:
[tex]\[ 1 - \frac{1}{2010} \][/tex]
So, the value of the expression is:
[tex]\[ 1 - \sum_{n=1}^{2009} \frac{1}{n(n+1)} = 1 - \left( 1 - \frac{1}{2010} \right) = \frac{1}{2010} \][/tex]
### Numerical Results:
1. The sum of the first 20 terms of the series [tex]\( 1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \ldots \)[/tex] up to 20 terms is approximately 1.9047619047619044.
2. The value of [tex]\( 1 - \left[ \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \ldots + \frac{1}{2009 \times 2010} \right] \)[/tex] is approximately 0.0004975124378099327.
Thus, the numerical approach matches with the answer provided:
[tex]\[ (1.9047619047619044, 0.0004975124378099327) \][/tex]
### Sum of the Series 1 + 1/3 + 1/6 + 1/10 + ... up to 20 Terms
We need to find the sum of the first 20 terms of the series:
[tex]\[ S = 1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \ldots \][/tex]
Let's analyze the pattern. Each term in the series can be written in the form:
[tex]\[ \frac{1}{\frac{n(n+1)}{2}} = \frac{2}{n(n+1)} \][/tex]
where [tex]\( n \)[/tex] is the term's index.
The sum of the first 20 terms is obtained by adding each term up:
[tex]\[ S = \sum_{n=1}^{20} \frac{2}{n(n+1)} \][/tex]
### Value of [tex]\( 1 - \left[ \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \ldots + \frac{1}{2009 \times 2010} \right] \)[/tex]
Here, we need to find the series:
[tex]\[ \sum_{n=1}^{2009} \frac{1}{n(n+1)} \][/tex]
We know:
[tex]\[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \][/tex]
This series is telescoping, meaning most terms cancel out:
[tex]\[ \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \ldots + \left(\frac{1}{2009} - \frac{1}{2010} \right) \][/tex]
After cancellation, we are left with:
[tex]\[ 1 - \frac{1}{2010} \][/tex]
So, the value of the expression is:
[tex]\[ 1 - \sum_{n=1}^{2009} \frac{1}{n(n+1)} = 1 - \left( 1 - \frac{1}{2010} \right) = \frac{1}{2010} \][/tex]
### Numerical Results:
1. The sum of the first 20 terms of the series [tex]\( 1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \ldots \)[/tex] up to 20 terms is approximately 1.9047619047619044.
2. The value of [tex]\( 1 - \left[ \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \ldots + \frac{1}{2009 \times 2010} \right] \)[/tex] is approximately 0.0004975124378099327.
Thus, the numerical approach matches with the answer provided:
[tex]\[ (1.9047619047619044, 0.0004975124378099327) \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.