IDNLearn.com provides a seamless experience for finding accurate answers. Our community provides timely and precise responses to help you understand and solve any issue you face.
Sagot :
To find the sums and values requested, let's break down each part of the problem step-by-step.
### Sum of the Series 1 + 1/3 + 1/6 + 1/10 + ... up to 20 Terms
We need to find the sum of the first 20 terms of the series:
[tex]\[ S = 1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \ldots \][/tex]
Let's analyze the pattern. Each term in the series can be written in the form:
[tex]\[ \frac{1}{\frac{n(n+1)}{2}} = \frac{2}{n(n+1)} \][/tex]
where [tex]\( n \)[/tex] is the term's index.
The sum of the first 20 terms is obtained by adding each term up:
[tex]\[ S = \sum_{n=1}^{20} \frac{2}{n(n+1)} \][/tex]
### Value of [tex]\( 1 - \left[ \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \ldots + \frac{1}{2009 \times 2010} \right] \)[/tex]
Here, we need to find the series:
[tex]\[ \sum_{n=1}^{2009} \frac{1}{n(n+1)} \][/tex]
We know:
[tex]\[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \][/tex]
This series is telescoping, meaning most terms cancel out:
[tex]\[ \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \ldots + \left(\frac{1}{2009} - \frac{1}{2010} \right) \][/tex]
After cancellation, we are left with:
[tex]\[ 1 - \frac{1}{2010} \][/tex]
So, the value of the expression is:
[tex]\[ 1 - \sum_{n=1}^{2009} \frac{1}{n(n+1)} = 1 - \left( 1 - \frac{1}{2010} \right) = \frac{1}{2010} \][/tex]
### Numerical Results:
1. The sum of the first 20 terms of the series [tex]\( 1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \ldots \)[/tex] up to 20 terms is approximately 1.9047619047619044.
2. The value of [tex]\( 1 - \left[ \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \ldots + \frac{1}{2009 \times 2010} \right] \)[/tex] is approximately 0.0004975124378099327.
Thus, the numerical approach matches with the answer provided:
[tex]\[ (1.9047619047619044, 0.0004975124378099327) \][/tex]
### Sum of the Series 1 + 1/3 + 1/6 + 1/10 + ... up to 20 Terms
We need to find the sum of the first 20 terms of the series:
[tex]\[ S = 1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \ldots \][/tex]
Let's analyze the pattern. Each term in the series can be written in the form:
[tex]\[ \frac{1}{\frac{n(n+1)}{2}} = \frac{2}{n(n+1)} \][/tex]
where [tex]\( n \)[/tex] is the term's index.
The sum of the first 20 terms is obtained by adding each term up:
[tex]\[ S = \sum_{n=1}^{20} \frac{2}{n(n+1)} \][/tex]
### Value of [tex]\( 1 - \left[ \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \ldots + \frac{1}{2009 \times 2010} \right] \)[/tex]
Here, we need to find the series:
[tex]\[ \sum_{n=1}^{2009} \frac{1}{n(n+1)} \][/tex]
We know:
[tex]\[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \][/tex]
This series is telescoping, meaning most terms cancel out:
[tex]\[ \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \ldots + \left(\frac{1}{2009} - \frac{1}{2010} \right) \][/tex]
After cancellation, we are left with:
[tex]\[ 1 - \frac{1}{2010} \][/tex]
So, the value of the expression is:
[tex]\[ 1 - \sum_{n=1}^{2009} \frac{1}{n(n+1)} = 1 - \left( 1 - \frac{1}{2010} \right) = \frac{1}{2010} \][/tex]
### Numerical Results:
1. The sum of the first 20 terms of the series [tex]\( 1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \ldots \)[/tex] up to 20 terms is approximately 1.9047619047619044.
2. The value of [tex]\( 1 - \left[ \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \ldots + \frac{1}{2009 \times 2010} \right] \)[/tex] is approximately 0.0004975124378099327.
Thus, the numerical approach matches with the answer provided:
[tex]\[ (1.9047619047619044, 0.0004975124378099327) \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.