Discover a wealth of knowledge and get your questions answered at IDNLearn.com. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.
Sagot :
Sure! Let's go through each part of the question step-by-step:
### (a) Show that [tex]\(\frac{9^{3 y}}{243} = 3^{6 y - 5}\)[/tex]
Step 1: Simplify the left-hand side [tex]\(\frac{9^{3 y}}{243}\)[/tex]
- First, notice that [tex]\(9 = 3^2\)[/tex]. So we can rewrite [tex]\(9^{3 y}\)[/tex] as:
[tex]\[ 9^{3 y} = (3^2)^{3 y} = 3^{6 y} \][/tex]
- Next, recognize that [tex]\(243 = 3^5\)[/tex]. So we can write:
[tex]\[ \frac{9^{3 y}}{243} = \frac{3^{6 y}}{3^5} = 3^{6 y - 5} \][/tex]
Step 2: Compare both sides
- On the right-hand side, we have:
[tex]\[ 3^{6 y - 5} \][/tex]
- Since we have shown that the left-hand side also simplifies to [tex]\(3^{6 y - 5}\)[/tex], both sides are equal.
So, we have shown that:
[tex]\[ \frac{9^{3 y}}{243} = 3^{6 y - 5} \][/tex]
### (b) Solve the simultaneous equations:
[tex]\[ \begin{aligned} \frac{9^{3 y}}{243} & = 27^{(x - 2)} \\ \log_{10} \sqrt{6 x y} & = \log_4 2 \end{aligned} \][/tex]
Step 1: Simplify the first equation [tex]\(\frac{9^{3 y}}{243} = 27^{(x - 2)}\)[/tex]
- Rewrite [tex]\(9^{3 y}\)[/tex] as [tex]\(3^{6 y}\)[/tex] and [tex]\(243\)[/tex] as [tex]\(3^5\)[/tex]:
[tex]\[ \frac{3^{6 y}}{3^5} = 3^{6 y - 5} \][/tex]
- Also, notice that [tex]\(27 = 3^3\)[/tex]. So [tex]\(27^{(x - 2)} = (3^3)^{x - 2} = 3^{3(x - 2)}\)[/tex]:
[tex]\[ 3^{6 y - 5} = 3^{3(x - 2)} \][/tex]
- Since the bases are the same, we can equate the exponents:
[tex]\[ 6 y - 5 = 3(x - 2) \][/tex]
[tex]\[ 6 y - 5 = 3x - 6 \][/tex]
[tex]\[ 6 y = 3x - 1 \quad (1) \][/tex]
Step 2: Simplify the second equation [tex]\(\log_{10} \sqrt{6 x y} = \log_4 2\)[/tex]
- We know that [tex]\(\log_4 2\)[/tex] can be simplified using change of base formula:
[tex]\[ \log_4 2 = \frac{\log_2 2}{\log_2 4} = \frac{1}{2} \][/tex]
- The equation becomes:
[tex]\[ \log_{10} \sqrt{6 x y} = \frac{1}{2} \][/tex]
- Rewrite [tex]\(\sqrt{6 x y}\)[/tex] as [tex]\((6 x y)^{1/2}\)[/tex]:
[tex]\[ \frac{1}{2} \log_{10} (6 x y) = \frac{1}{2} \][/tex]
- Multiply both sides by 2:
[tex]\[ \log_{10} (6 x y) = 1 \][/tex]
- Convert from logarithmic form to exponential form:
[tex]\[ 6 x y = 10 \quad (2) \][/tex]
Step 3: Solve the simultaneous equations
We now solve the system of equations (1) and (2):
[tex]\[ \begin{aligned} 6 y & = 3x - 1 \quad (1) \\ 6 x y & = 10 \quad (2) \end{aligned} \][/tex]
From equation (1), solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{3x - 1}{6} \][/tex]
Substitute [tex]\(y\)[/tex] in equation (2):
[tex]\[ 6 x \left(\frac{3x - 1}{6}\right) = 10 \][/tex]
[tex]\[ x (3x - 1) = 10 \][/tex]
[tex]\[ 3x^2 - x - 10 = 0 \][/tex]
Solve the quadratic equation:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 3\)[/tex], [tex]\(b = -1\)[/tex], and [tex]\(c = -10\)[/tex]:
[tex]\[ x = \frac{1 \pm \sqrt{1 + 120}}{6} \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{121}}{6} \][/tex]
[tex]\[ x = \frac{1 \pm 11}{6} \][/tex]
This gives us two solutions:
[tex]\[ x = 2 \quad \text{or} \quad x = -\frac{5}{3} \][/tex]
Corresponding [tex]\(y\)[/tex] values:
For [tex]\(x = 2\)[/tex]:
[tex]\[ y = \frac{3(2) - 1}{6} = \frac{5}{6} \][/tex]
For [tex]\(x = -\frac{5}{3}\)[/tex]:
[tex]\[ y = \frac{3(-\frac{5}{3}) - 1}{6} = -\frac{2}{3} \][/tex]
Thus, the solutions are:
[tex]\[ (x, y) = \left(\frac{1}{6} - \frac{\sqrt{1 + 12\sqrt{10}}}{6}, -\frac{\sqrt{1 + 12\sqrt{10}}}{12} - \frac{1}{12} \right), \left(\frac{1}{6} + \frac{\sqrt{1 + 12\sqrt{10}}}{6}, -\frac{1}{12} + \frac{\sqrt{1 + 12\sqrt{10}}}{12} \right) \][/tex]
### (a) Show that [tex]\(\frac{9^{3 y}}{243} = 3^{6 y - 5}\)[/tex]
Step 1: Simplify the left-hand side [tex]\(\frac{9^{3 y}}{243}\)[/tex]
- First, notice that [tex]\(9 = 3^2\)[/tex]. So we can rewrite [tex]\(9^{3 y}\)[/tex] as:
[tex]\[ 9^{3 y} = (3^2)^{3 y} = 3^{6 y} \][/tex]
- Next, recognize that [tex]\(243 = 3^5\)[/tex]. So we can write:
[tex]\[ \frac{9^{3 y}}{243} = \frac{3^{6 y}}{3^5} = 3^{6 y - 5} \][/tex]
Step 2: Compare both sides
- On the right-hand side, we have:
[tex]\[ 3^{6 y - 5} \][/tex]
- Since we have shown that the left-hand side also simplifies to [tex]\(3^{6 y - 5}\)[/tex], both sides are equal.
So, we have shown that:
[tex]\[ \frac{9^{3 y}}{243} = 3^{6 y - 5} \][/tex]
### (b) Solve the simultaneous equations:
[tex]\[ \begin{aligned} \frac{9^{3 y}}{243} & = 27^{(x - 2)} \\ \log_{10} \sqrt{6 x y} & = \log_4 2 \end{aligned} \][/tex]
Step 1: Simplify the first equation [tex]\(\frac{9^{3 y}}{243} = 27^{(x - 2)}\)[/tex]
- Rewrite [tex]\(9^{3 y}\)[/tex] as [tex]\(3^{6 y}\)[/tex] and [tex]\(243\)[/tex] as [tex]\(3^5\)[/tex]:
[tex]\[ \frac{3^{6 y}}{3^5} = 3^{6 y - 5} \][/tex]
- Also, notice that [tex]\(27 = 3^3\)[/tex]. So [tex]\(27^{(x - 2)} = (3^3)^{x - 2} = 3^{3(x - 2)}\)[/tex]:
[tex]\[ 3^{6 y - 5} = 3^{3(x - 2)} \][/tex]
- Since the bases are the same, we can equate the exponents:
[tex]\[ 6 y - 5 = 3(x - 2) \][/tex]
[tex]\[ 6 y - 5 = 3x - 6 \][/tex]
[tex]\[ 6 y = 3x - 1 \quad (1) \][/tex]
Step 2: Simplify the second equation [tex]\(\log_{10} \sqrt{6 x y} = \log_4 2\)[/tex]
- We know that [tex]\(\log_4 2\)[/tex] can be simplified using change of base formula:
[tex]\[ \log_4 2 = \frac{\log_2 2}{\log_2 4} = \frac{1}{2} \][/tex]
- The equation becomes:
[tex]\[ \log_{10} \sqrt{6 x y} = \frac{1}{2} \][/tex]
- Rewrite [tex]\(\sqrt{6 x y}\)[/tex] as [tex]\((6 x y)^{1/2}\)[/tex]:
[tex]\[ \frac{1}{2} \log_{10} (6 x y) = \frac{1}{2} \][/tex]
- Multiply both sides by 2:
[tex]\[ \log_{10} (6 x y) = 1 \][/tex]
- Convert from logarithmic form to exponential form:
[tex]\[ 6 x y = 10 \quad (2) \][/tex]
Step 3: Solve the simultaneous equations
We now solve the system of equations (1) and (2):
[tex]\[ \begin{aligned} 6 y & = 3x - 1 \quad (1) \\ 6 x y & = 10 \quad (2) \end{aligned} \][/tex]
From equation (1), solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{3x - 1}{6} \][/tex]
Substitute [tex]\(y\)[/tex] in equation (2):
[tex]\[ 6 x \left(\frac{3x - 1}{6}\right) = 10 \][/tex]
[tex]\[ x (3x - 1) = 10 \][/tex]
[tex]\[ 3x^2 - x - 10 = 0 \][/tex]
Solve the quadratic equation:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 3\)[/tex], [tex]\(b = -1\)[/tex], and [tex]\(c = -10\)[/tex]:
[tex]\[ x = \frac{1 \pm \sqrt{1 + 120}}{6} \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{121}}{6} \][/tex]
[tex]\[ x = \frac{1 \pm 11}{6} \][/tex]
This gives us two solutions:
[tex]\[ x = 2 \quad \text{or} \quad x = -\frac{5}{3} \][/tex]
Corresponding [tex]\(y\)[/tex] values:
For [tex]\(x = 2\)[/tex]:
[tex]\[ y = \frac{3(2) - 1}{6} = \frac{5}{6} \][/tex]
For [tex]\(x = -\frac{5}{3}\)[/tex]:
[tex]\[ y = \frac{3(-\frac{5}{3}) - 1}{6} = -\frac{2}{3} \][/tex]
Thus, the solutions are:
[tex]\[ (x, y) = \left(\frac{1}{6} - \frac{\sqrt{1 + 12\sqrt{10}}}{6}, -\frac{\sqrt{1 + 12\sqrt{10}}}{12} - \frac{1}{12} \right), \left(\frac{1}{6} + \frac{\sqrt{1 + 12\sqrt{10}}}{6}, -\frac{1}{12} + \frac{\sqrt{1 + 12\sqrt{10}}}{12} \right) \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.