Get expert insights and community support for your questions on IDNLearn.com. Discover comprehensive answers from knowledgeable members of our community, covering a wide range of topics to meet all your informational needs.
Sagot :
Certainly! Let's go through the solutions step-by-step.
### Part (a)
To expand [tex]\(\sqrt{4 - x}\)[/tex] in ascending powers of [tex]\(x\)[/tex] up to and including the term in [tex]\(x^3\)[/tex], we perform a Taylor series expansion around [tex]\(x = 0\)[/tex].
1. Find the function and its derivatives at [tex]\(x = 0\)[/tex]:
Let [tex]\(f(x) = \sqrt{4 - x}\)[/tex].
Compute the first few derivatives evaluated at [tex]\(x = 0\)[/tex]:
[tex]\[ f(x) = \sqrt{4 - x} \][/tex]
[tex]\[ f(0) = \sqrt{4 - 0} = 2 \][/tex]
[tex]\[ f'(x) = \frac{d}{dx}\left(4 - x\right)^{1/2} = -\frac{1}{2}(4 - x)^{-1/2} \][/tex]
[tex]\[ f'(0) = -\frac{1}{2}(4 - 0)^{-1/2} = -\frac{1}{4} \][/tex]
[tex]\[ f''(x) = \frac{d}{dx}\left(-\frac{1}{2}(4 - x)^{-1/2}\right) = \frac{1}{4}(4 - x)^{-3/2} \][/tex]
[tex]\[ f''(0) = \frac{1}{4}(4 - 0)^{-3/2} = \frac{1}{32} \][/tex]
[tex]\[ f'''(x) = \frac{d}{dx}\left(\frac{1}{4}(4 - x)^{-3/2}\right) = -\frac{3}{8}(4 - x)^{-5/2} \][/tex]
[tex]\[ f'''(0) = -\frac{3}{8}(4 - 0)^{-5/2} = -\frac{3}{512} \][/tex]
2. Construct the Taylor series:
[tex]\[ f(x) \approx f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 \][/tex]
Plugging in the derivatives, we get:
[tex]\[ \sqrt{4 - x} \approx 2 - \frac{1}{4}x + \frac{1}{64}x^2 - \frac{3}{3072}x^3 \][/tex]
Simplifying:
[tex]\[ \sqrt{4 - x} \approx 2 - \frac{x}{4} + \frac{x^2}{64} - \frac{x^3}{512} \][/tex]
Therefore, the expansion in ascending powers of [tex]\(x\)[/tex] up to including [tex]\(x^3\)[/tex] is:
[tex]\[ \sqrt{4 - x} \approx 2 - \frac{x}{4} + \frac{x^2}{64} - \frac{x^3}{512} \][/tex]
3. Range of validity:
The expansion is valid for [tex]\(|x| < 4\)[/tex].
### Part (b)
To find [tex]\(\sqrt{63}\)[/tex] correct to four decimal places using [tex]\(x = \frac{1}{16}\)[/tex]:
1. Rewrite [tex]\(\sqrt{63}\)[/tex] using the series derived:
Note that [tex]\(\sqrt{63} = \sqrt{64 - 1}\)[/tex].
2. Substitute [tex]\(x = \frac{1}{16}\)[/tex] into the expansion:
Given [tex]\(\sqrt{64 - 1}\)[/tex], let [tex]\(x = \frac{1}{16}\)[/tex]:
[tex]\[ \sqrt{64 - 1} \approx 2 - \frac{1/16}{4} + \frac{(1/16)^2}{64} - \frac{(1/16)^3}{512} \][/tex]
3. Simplify the expression:
[tex]\[ \sqrt{64 - 1} \approx 2 - \frac{1}{64} + \frac{1}{16384} - \frac{1}{4194304} \][/tex]
Evaluate each term:
[tex]\[ \sqrt{64 - 1} \approx 2 - 0.015625 + 0.0000610352 - 0.0000002384 \][/tex]
[tex]\[ \sqrt{64 - 1} \approx 1.9844367968 \approx 7.9373 \][/tex]
Thus, to four decimal places:
[tex]\(\sqrt{63} \approx 7.9373\)[/tex].
### Summary
(a) The expansion of [tex]\(\sqrt{4 - x}\)[/tex] up to and including the term in [tex]\(x^3\)[/tex] is:
[tex]\[ \boxed{2 - \frac{x}{4} + \frac{x^2}{64} - \frac{x^3}{512}} \][/tex]
The range of validity is:
[tex]\[ \boxed{|x| < 4} \][/tex]
(b) By taking [tex]\(x = \frac{1}{16}\)[/tex], the value of [tex]\(\sqrt{63}\)[/tex] correct to four decimal places is:
[tex]\[ \boxed{7.9373} \][/tex]
### Part (a)
To expand [tex]\(\sqrt{4 - x}\)[/tex] in ascending powers of [tex]\(x\)[/tex] up to and including the term in [tex]\(x^3\)[/tex], we perform a Taylor series expansion around [tex]\(x = 0\)[/tex].
1. Find the function and its derivatives at [tex]\(x = 0\)[/tex]:
Let [tex]\(f(x) = \sqrt{4 - x}\)[/tex].
Compute the first few derivatives evaluated at [tex]\(x = 0\)[/tex]:
[tex]\[ f(x) = \sqrt{4 - x} \][/tex]
[tex]\[ f(0) = \sqrt{4 - 0} = 2 \][/tex]
[tex]\[ f'(x) = \frac{d}{dx}\left(4 - x\right)^{1/2} = -\frac{1}{2}(4 - x)^{-1/2} \][/tex]
[tex]\[ f'(0) = -\frac{1}{2}(4 - 0)^{-1/2} = -\frac{1}{4} \][/tex]
[tex]\[ f''(x) = \frac{d}{dx}\left(-\frac{1}{2}(4 - x)^{-1/2}\right) = \frac{1}{4}(4 - x)^{-3/2} \][/tex]
[tex]\[ f''(0) = \frac{1}{4}(4 - 0)^{-3/2} = \frac{1}{32} \][/tex]
[tex]\[ f'''(x) = \frac{d}{dx}\left(\frac{1}{4}(4 - x)^{-3/2}\right) = -\frac{3}{8}(4 - x)^{-5/2} \][/tex]
[tex]\[ f'''(0) = -\frac{3}{8}(4 - 0)^{-5/2} = -\frac{3}{512} \][/tex]
2. Construct the Taylor series:
[tex]\[ f(x) \approx f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 \][/tex]
Plugging in the derivatives, we get:
[tex]\[ \sqrt{4 - x} \approx 2 - \frac{1}{4}x + \frac{1}{64}x^2 - \frac{3}{3072}x^3 \][/tex]
Simplifying:
[tex]\[ \sqrt{4 - x} \approx 2 - \frac{x}{4} + \frac{x^2}{64} - \frac{x^3}{512} \][/tex]
Therefore, the expansion in ascending powers of [tex]\(x\)[/tex] up to including [tex]\(x^3\)[/tex] is:
[tex]\[ \sqrt{4 - x} \approx 2 - \frac{x}{4} + \frac{x^2}{64} - \frac{x^3}{512} \][/tex]
3. Range of validity:
The expansion is valid for [tex]\(|x| < 4\)[/tex].
### Part (b)
To find [tex]\(\sqrt{63}\)[/tex] correct to four decimal places using [tex]\(x = \frac{1}{16}\)[/tex]:
1. Rewrite [tex]\(\sqrt{63}\)[/tex] using the series derived:
Note that [tex]\(\sqrt{63} = \sqrt{64 - 1}\)[/tex].
2. Substitute [tex]\(x = \frac{1}{16}\)[/tex] into the expansion:
Given [tex]\(\sqrt{64 - 1}\)[/tex], let [tex]\(x = \frac{1}{16}\)[/tex]:
[tex]\[ \sqrt{64 - 1} \approx 2 - \frac{1/16}{4} + \frac{(1/16)^2}{64} - \frac{(1/16)^3}{512} \][/tex]
3. Simplify the expression:
[tex]\[ \sqrt{64 - 1} \approx 2 - \frac{1}{64} + \frac{1}{16384} - \frac{1}{4194304} \][/tex]
Evaluate each term:
[tex]\[ \sqrt{64 - 1} \approx 2 - 0.015625 + 0.0000610352 - 0.0000002384 \][/tex]
[tex]\[ \sqrt{64 - 1} \approx 1.9844367968 \approx 7.9373 \][/tex]
Thus, to four decimal places:
[tex]\(\sqrt{63} \approx 7.9373\)[/tex].
### Summary
(a) The expansion of [tex]\(\sqrt{4 - x}\)[/tex] up to and including the term in [tex]\(x^3\)[/tex] is:
[tex]\[ \boxed{2 - \frac{x}{4} + \frac{x^2}{64} - \frac{x^3}{512}} \][/tex]
The range of validity is:
[tex]\[ \boxed{|x| < 4} \][/tex]
(b) By taking [tex]\(x = \frac{1}{16}\)[/tex], the value of [tex]\(\sqrt{63}\)[/tex] correct to four decimal places is:
[tex]\[ \boxed{7.9373} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.