IDNLearn.com is your go-to resource for finding answers to any question you have. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
Sure! Let's solve the listed differential equations one by one. Here's the detailed, step-by-step solution for each problem:
### Part I: Solving Differential Equations
#### i) [tex]\((x - 2y) dx + x dy = 0\)[/tex]
This is a first-order differential equation that we can solve using the method of exact equations or an integrating factor.
1. Rewrite the equation:
[tex]\[ (x - 2y) \frac{dx}{dy} + x = 0 \][/tex]
[tex]\[ (x - 2y) dx + x dy = 0 \][/tex]
2. Separate variables:
[tex]\[ (x - 2y) dx + x dy = 0 \][/tex]
[tex]\[ x \,dy = - (x - 2y) dx \][/tex]
[tex]\[ x \frac{dy}{dx} = -x + 2y \][/tex]
[tex]\[ \frac{dy}{dx} = -1 + \frac{2y}{x} \][/tex]
3. This is a linear first-order differential equation. We use an integrating factor. Determine the integrating factor, [tex]\( \mu(x) \)[/tex]:
[tex]\[ \mu(x) = \exp\left(\int -\frac{2}{x} \, dx\right) = \exp\left(-2\ln|x|\right) = \frac{1}{x^2} \][/tex]
4. Multiply through by the integrating factor:
[tex]\[ \frac{1}{x^2} \frac{dy}{dx} + \frac{2y}{x^3} = -\frac{1}{x^2} \][/tex]
5. We recognize the left side as a derivative of a product:
[tex]\[ \frac{d}{dx}\left(\frac{y}{x^2}\right) = -\frac{1}{x^2} \][/tex]
6. Integrate both sides:
[tex]\[ \frac{y}{x^2} = \int -\frac{1}{x^2} \, dx = \frac{1}{x} + C \][/tex]
7. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = x \left(C - \frac{1}{x}\right) = Cx - 1 \][/tex]
The solution is [tex]\( y = Cx - 1 \)[/tex].
#### ii) [tex]\((2xy + \cos y) dx + (x^2 - x \sin y) dy = 0\)[/tex]
Rewriting the equation:
[tex]\[ (2xy + \cos y) dx + (x^2 - x \sin y) dy = 0 \][/tex]
This is not in a readily recognizable form, so we need to check if it's exact by examining:
[tex]\[ M = 2xy + \cos y \quad \text{and} \quad N = x^2 - x \sin y \][/tex]
We need the partial derivatives:
[tex]\[ \frac{\partial M}{\partial y} = 2x - \sin y \][/tex]
[tex]\[ \frac{\partial N}{\partial x} = 2x - \sin y \][/tex]
Since [tex]\(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\)[/tex], the differential equation is exact.
Therefore, an exact solution exists.
[tex]\[ \Phi(x, y) = \int M \, dx = x^2 y + \int \cos y \, dx \][/tex]
The term involving [tex]\(y\)[/tex] must come from [tex]\(\Phi_y\)[/tex]:
[tex]\[ \frac{\partial \Phi}{\partial y} = x^2 - x \sin y \][/tex]
Substitute back and integrate:
[tex]\[ \Phi(x, y) = x^2 y + \sin y = C \][/tex]
So, the solution to the equation is:
[tex]\[ x^2 y + \sin y = C \][/tex]
### Part II: Solving Initial Value Problems
#### 1) [tex]\((x^2 + 9) \frac{dy}{dx} + xy = 0 \quad \text{with} \quad y(0) = 2\)[/tex]
We separate variables and integrate:
[tex]\[ (x^2 + 9) \frac{dy}{dx} + xy = 0 \][/tex]
[tex]\[ \frac{dy}{dx} = - \frac{xy}{x^2 + 9} \][/tex]
Separate variables:
[tex]\[ \frac{dy}{y} = -\frac{x}{x^2 + 9} dx \][/tex]
Integrate both sides:
[tex]\[ \int \frac{1}{y} \, dy = - \int \frac{x}{x^2 + 9} dx \][/tex]
Let [tex]\( u = x^2 + 9 \)[/tex] so [tex]\( du = 2x dx \)[/tex].
[tex]\[ \ln |y| = -\frac{1}{2} \ln (x^2 + 9) + C \][/tex]
Exponentiate both sides:
[tex]\[ |y| = C (x^2 + 9)^{-1/2} \][/tex]
Apply initial condition [tex]\( y(0) = 2 \)[/tex]:
[tex]\[ 2 = C (0^2 + 9)^{-1/2} \][/tex]
So, [tex]\( C = 6 \)[/tex]:
[tex]\[ y = \frac{6}{\sqrt{x^2 + 9}} \][/tex]
#### ii) [tex]\( \frac{dy}{dx} + xy = \frac{x}{y^3} \quad \text{with} \quad y(0) = 2\)[/tex]
This is a nonlinear ODE, and we can solve it via substitution. Let [tex]\( y^4 = v \)[/tex]:
[tex]\[ 4 y^3 \frac{dy}{dx} = \frac{dv}{dx} \][/tex]
So:
[tex]\[ 4 y^3 \frac{dy}{dx} = v' \quad \text{and} \quad y = v^{1/4} \][/tex]
Rewrite the given equation:
[tex]\[ 4 y^3 \frac{dy}{dx} + 4 x y^4 = 4 x y^{-3} \][/tex]
Substitute:
[tex]\[ \frac{dy}{dx} + xy - \frac{x}{y^3} = 0 \][/tex]
All terms cancel out naturally, indicating:
[tex]\[ y = e^t \][/tex]
### Part III: Particular Solution
#### 1) [tex]\(\frac{d^2 y}{d x^2} - 3 \frac{d y}{d x} + 2 y = e^{-3 x}\)[/tex]
Solve the homogeneous part first:
[tex]\[ r^2 - 3r + 2 = 0 \][/tex]
The characteristic equation:
[tex]\[ r = 1 \quad \text{and} \quad r = 2 \][/tex]
General solution:
[tex]\[ y_h = C_1 e^x_1 + C_2 e^x_2 \][/tex]
For particular solution, solve non-homogeneous:
[tex]\[ y_p = Ae^{-3x} \][/tex]
Solve and combine:
[tex]\[ \rightarrow y = C_1 e^x_1 + C_2 e^x_2 \][/tex]
#### 2) [tex]\(\frac{d^2 y}{d x^2} + 4 y = \cos 3 x\)[/tex]
Homogeneous part first solution:
[tex]\(r = m\cos(3x)\)[/tex]
Find general terms solution:
[tex]\( \rightarrow y_h\)[/tex]
### Part IV: Power Series Method
Solve series for:
[tex]\(y' = f(x)\)[/tex].
Include terms so ordinary and quadratic are consistent!
\((1-x^2y') - 2 (x y'') + 2y = 0) at \(x_0 = 0)
Expand and solve.
### Part I: Solving Differential Equations
#### i) [tex]\((x - 2y) dx + x dy = 0\)[/tex]
This is a first-order differential equation that we can solve using the method of exact equations or an integrating factor.
1. Rewrite the equation:
[tex]\[ (x - 2y) \frac{dx}{dy} + x = 0 \][/tex]
[tex]\[ (x - 2y) dx + x dy = 0 \][/tex]
2. Separate variables:
[tex]\[ (x - 2y) dx + x dy = 0 \][/tex]
[tex]\[ x \,dy = - (x - 2y) dx \][/tex]
[tex]\[ x \frac{dy}{dx} = -x + 2y \][/tex]
[tex]\[ \frac{dy}{dx} = -1 + \frac{2y}{x} \][/tex]
3. This is a linear first-order differential equation. We use an integrating factor. Determine the integrating factor, [tex]\( \mu(x) \)[/tex]:
[tex]\[ \mu(x) = \exp\left(\int -\frac{2}{x} \, dx\right) = \exp\left(-2\ln|x|\right) = \frac{1}{x^2} \][/tex]
4. Multiply through by the integrating factor:
[tex]\[ \frac{1}{x^2} \frac{dy}{dx} + \frac{2y}{x^3} = -\frac{1}{x^2} \][/tex]
5. We recognize the left side as a derivative of a product:
[tex]\[ \frac{d}{dx}\left(\frac{y}{x^2}\right) = -\frac{1}{x^2} \][/tex]
6. Integrate both sides:
[tex]\[ \frac{y}{x^2} = \int -\frac{1}{x^2} \, dx = \frac{1}{x} + C \][/tex]
7. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = x \left(C - \frac{1}{x}\right) = Cx - 1 \][/tex]
The solution is [tex]\( y = Cx - 1 \)[/tex].
#### ii) [tex]\((2xy + \cos y) dx + (x^2 - x \sin y) dy = 0\)[/tex]
Rewriting the equation:
[tex]\[ (2xy + \cos y) dx + (x^2 - x \sin y) dy = 0 \][/tex]
This is not in a readily recognizable form, so we need to check if it's exact by examining:
[tex]\[ M = 2xy + \cos y \quad \text{and} \quad N = x^2 - x \sin y \][/tex]
We need the partial derivatives:
[tex]\[ \frac{\partial M}{\partial y} = 2x - \sin y \][/tex]
[tex]\[ \frac{\partial N}{\partial x} = 2x - \sin y \][/tex]
Since [tex]\(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\)[/tex], the differential equation is exact.
Therefore, an exact solution exists.
[tex]\[ \Phi(x, y) = \int M \, dx = x^2 y + \int \cos y \, dx \][/tex]
The term involving [tex]\(y\)[/tex] must come from [tex]\(\Phi_y\)[/tex]:
[tex]\[ \frac{\partial \Phi}{\partial y} = x^2 - x \sin y \][/tex]
Substitute back and integrate:
[tex]\[ \Phi(x, y) = x^2 y + \sin y = C \][/tex]
So, the solution to the equation is:
[tex]\[ x^2 y + \sin y = C \][/tex]
### Part II: Solving Initial Value Problems
#### 1) [tex]\((x^2 + 9) \frac{dy}{dx} + xy = 0 \quad \text{with} \quad y(0) = 2\)[/tex]
We separate variables and integrate:
[tex]\[ (x^2 + 9) \frac{dy}{dx} + xy = 0 \][/tex]
[tex]\[ \frac{dy}{dx} = - \frac{xy}{x^2 + 9} \][/tex]
Separate variables:
[tex]\[ \frac{dy}{y} = -\frac{x}{x^2 + 9} dx \][/tex]
Integrate both sides:
[tex]\[ \int \frac{1}{y} \, dy = - \int \frac{x}{x^2 + 9} dx \][/tex]
Let [tex]\( u = x^2 + 9 \)[/tex] so [tex]\( du = 2x dx \)[/tex].
[tex]\[ \ln |y| = -\frac{1}{2} \ln (x^2 + 9) + C \][/tex]
Exponentiate both sides:
[tex]\[ |y| = C (x^2 + 9)^{-1/2} \][/tex]
Apply initial condition [tex]\( y(0) = 2 \)[/tex]:
[tex]\[ 2 = C (0^2 + 9)^{-1/2} \][/tex]
So, [tex]\( C = 6 \)[/tex]:
[tex]\[ y = \frac{6}{\sqrt{x^2 + 9}} \][/tex]
#### ii) [tex]\( \frac{dy}{dx} + xy = \frac{x}{y^3} \quad \text{with} \quad y(0) = 2\)[/tex]
This is a nonlinear ODE, and we can solve it via substitution. Let [tex]\( y^4 = v \)[/tex]:
[tex]\[ 4 y^3 \frac{dy}{dx} = \frac{dv}{dx} \][/tex]
So:
[tex]\[ 4 y^3 \frac{dy}{dx} = v' \quad \text{and} \quad y = v^{1/4} \][/tex]
Rewrite the given equation:
[tex]\[ 4 y^3 \frac{dy}{dx} + 4 x y^4 = 4 x y^{-3} \][/tex]
Substitute:
[tex]\[ \frac{dy}{dx} + xy - \frac{x}{y^3} = 0 \][/tex]
All terms cancel out naturally, indicating:
[tex]\[ y = e^t \][/tex]
### Part III: Particular Solution
#### 1) [tex]\(\frac{d^2 y}{d x^2} - 3 \frac{d y}{d x} + 2 y = e^{-3 x}\)[/tex]
Solve the homogeneous part first:
[tex]\[ r^2 - 3r + 2 = 0 \][/tex]
The characteristic equation:
[tex]\[ r = 1 \quad \text{and} \quad r = 2 \][/tex]
General solution:
[tex]\[ y_h = C_1 e^x_1 + C_2 e^x_2 \][/tex]
For particular solution, solve non-homogeneous:
[tex]\[ y_p = Ae^{-3x} \][/tex]
Solve and combine:
[tex]\[ \rightarrow y = C_1 e^x_1 + C_2 e^x_2 \][/tex]
#### 2) [tex]\(\frac{d^2 y}{d x^2} + 4 y = \cos 3 x\)[/tex]
Homogeneous part first solution:
[tex]\(r = m\cos(3x)\)[/tex]
Find general terms solution:
[tex]\( \rightarrow y_h\)[/tex]
### Part IV: Power Series Method
Solve series for:
[tex]\(y' = f(x)\)[/tex].
Include terms so ordinary and quadratic are consistent!
\((1-x^2y') - 2 (x y'') + 2y = 0) at \(x_0 = 0)
Expand and solve.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.