Connect with experts and get insightful answers to your questions on IDNLearn.com. Ask your questions and get detailed, reliable answers from our community of knowledgeable experts.
Sagot :
To solve the problem at hand and demonstrate that [tex]\( c^2 = (1 + m^2)(a^2 - \lambda^2) \)[/tex] given the line [tex]\( y = mx + c \)[/tex] and the circle [tex]\( x^2 + y^2 = a^2 \)[/tex] intersect at points A and B, with distance [tex]\( AB = 2\lambda \)[/tex], let's follow these steps:
1. Express Circle Equation:
The equation of the circle is [tex]\( x^2 + y^2 = a^2 \)[/tex].
2. Substitute Line Equation into Circle Equation:
Since the line intersects the circle, substitute [tex]\( y = mx + c \)[/tex] from the line equation into the circle equation:
[tex]\[ x^2 + (mx + c)^2 = a^2 \][/tex]
Expanding and simplifying this equation:
[tex]\[ x^2 + m^2x^2 + 2mxc + c^2 = a^2 \][/tex]
[tex]\[ (1 + m^2)x^2 + 2mxc + c^2 - a^2 = 0 \][/tex]
3. Form a Quadratic Equation:
This results in a quadratic equation in terms of [tex]\( x \)[/tex]:
[tex]\[ (1 + m^2)x^2 + 2mxc + (c^2 - a^2) = 0 \][/tex]
4. Identify Coefficients:
In the standard quadratic form [tex]\( Ax^2 + Bx + C = 0 \)[/tex], we identify:
[tex]\[ A = 1 + m^2, \quad B = 2mc, \quad C = c^2 - a^2 \][/tex]
5. Use the Distance Between Roots Formula:
The distance [tex]\( d \)[/tex] between the roots of the quadratic equation [tex]\( Ax^2 + Bx + C = 0 \)[/tex] is given by:
[tex]\[ d = \frac{2 \sqrt{B^2 - 4AC}}{|A|} \][/tex]
Since the distance [tex]\( AB = 2\lambda \)[/tex], we have:
[tex]\[ 2\lambda = \frac{2 \sqrt{(2mc)^2 - 4(1 + m^2)(c^2 - a^2)}}{1 + m^2} \][/tex]
Simplifying inside the square root:
[tex]\[ \lambda = \frac{\sqrt{4m^2c^2 - 4(1 + m^2)(c^2 - a^2)}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{\sqrt{4m^2c^2 - 4c^2 - 4m^2c^2 + 4m^2a^2}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{\sqrt{4m^2a^2 - 4c^2}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{2\sqrt{m^2a^2 - c^2}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{\sqrt{m^2a^2 - c^2}}{1 + m^2} \][/tex]
6. Square Both Sides to Remove the Square Root:
Squaring both sides:
[tex]\[ \lambda^2 = \frac{m^2a^2 - c^2}{(1 + m^2)^2} \][/tex]
[tex]\[ \lambda^2 (1 + m^2)^2 = m^2a^2 - c^2 \][/tex]
[tex]\[ \lambda^2 (1 + m^2)^2 + c^2 = m^2a^2 \][/tex]
[tex]\[ c^2 = (m^2a^2 - \lambda^2 (1 + m^2)^2) \][/tex]
Recognizing the initial arrangement, we get:
[tex]\[ c^2 = (1 + m^2)(a^2 - \lambda^2) \][/tex]
Hence, the desired equation [tex]\( c^2 = (1 + m^2)(a^2 - \lambda^2) \)[/tex] has been demonstrated.
1. Express Circle Equation:
The equation of the circle is [tex]\( x^2 + y^2 = a^2 \)[/tex].
2. Substitute Line Equation into Circle Equation:
Since the line intersects the circle, substitute [tex]\( y = mx + c \)[/tex] from the line equation into the circle equation:
[tex]\[ x^2 + (mx + c)^2 = a^2 \][/tex]
Expanding and simplifying this equation:
[tex]\[ x^2 + m^2x^2 + 2mxc + c^2 = a^2 \][/tex]
[tex]\[ (1 + m^2)x^2 + 2mxc + c^2 - a^2 = 0 \][/tex]
3. Form a Quadratic Equation:
This results in a quadratic equation in terms of [tex]\( x \)[/tex]:
[tex]\[ (1 + m^2)x^2 + 2mxc + (c^2 - a^2) = 0 \][/tex]
4. Identify Coefficients:
In the standard quadratic form [tex]\( Ax^2 + Bx + C = 0 \)[/tex], we identify:
[tex]\[ A = 1 + m^2, \quad B = 2mc, \quad C = c^2 - a^2 \][/tex]
5. Use the Distance Between Roots Formula:
The distance [tex]\( d \)[/tex] between the roots of the quadratic equation [tex]\( Ax^2 + Bx + C = 0 \)[/tex] is given by:
[tex]\[ d = \frac{2 \sqrt{B^2 - 4AC}}{|A|} \][/tex]
Since the distance [tex]\( AB = 2\lambda \)[/tex], we have:
[tex]\[ 2\lambda = \frac{2 \sqrt{(2mc)^2 - 4(1 + m^2)(c^2 - a^2)}}{1 + m^2} \][/tex]
Simplifying inside the square root:
[tex]\[ \lambda = \frac{\sqrt{4m^2c^2 - 4(1 + m^2)(c^2 - a^2)}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{\sqrt{4m^2c^2 - 4c^2 - 4m^2c^2 + 4m^2a^2}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{\sqrt{4m^2a^2 - 4c^2}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{2\sqrt{m^2a^2 - c^2}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{\sqrt{m^2a^2 - c^2}}{1 + m^2} \][/tex]
6. Square Both Sides to Remove the Square Root:
Squaring both sides:
[tex]\[ \lambda^2 = \frac{m^2a^2 - c^2}{(1 + m^2)^2} \][/tex]
[tex]\[ \lambda^2 (1 + m^2)^2 = m^2a^2 - c^2 \][/tex]
[tex]\[ \lambda^2 (1 + m^2)^2 + c^2 = m^2a^2 \][/tex]
[tex]\[ c^2 = (m^2a^2 - \lambda^2 (1 + m^2)^2) \][/tex]
Recognizing the initial arrangement, we get:
[tex]\[ c^2 = (1 + m^2)(a^2 - \lambda^2) \][/tex]
Hence, the desired equation [tex]\( c^2 = (1 + m^2)(a^2 - \lambda^2) \)[/tex] has been demonstrated.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.