Solve your doubts and expand your knowledge with IDNLearn.com's extensive Q&A database. Ask any question and get a thorough, accurate answer from our community of experienced professionals.

The line [tex]y = mx + c[/tex] and the circle [tex]x^2 + y^2 = a^2[/tex] intersect at points A and B. If [tex]AB = 2 \lambda[/tex], show that

[tex]c^2 = \left(1 + m^2\right)\left(a^2 - \lambda^2\right)[/tex]


Sagot :

To solve the problem at hand and demonstrate that [tex]\( c^2 = (1 + m^2)(a^2 - \lambda^2) \)[/tex] given the line [tex]\( y = mx + c \)[/tex] and the circle [tex]\( x^2 + y^2 = a^2 \)[/tex] intersect at points A and B, with distance [tex]\( AB = 2\lambda \)[/tex], let's follow these steps:

1. Express Circle Equation:
The equation of the circle is [tex]\( x^2 + y^2 = a^2 \)[/tex].

2. Substitute Line Equation into Circle Equation:
Since the line intersects the circle, substitute [tex]\( y = mx + c \)[/tex] from the line equation into the circle equation:
[tex]\[ x^2 + (mx + c)^2 = a^2 \][/tex]
Expanding and simplifying this equation:
[tex]\[ x^2 + m^2x^2 + 2mxc + c^2 = a^2 \][/tex]
[tex]\[ (1 + m^2)x^2 + 2mxc + c^2 - a^2 = 0 \][/tex]

3. Form a Quadratic Equation:
This results in a quadratic equation in terms of [tex]\( x \)[/tex]:
[tex]\[ (1 + m^2)x^2 + 2mxc + (c^2 - a^2) = 0 \][/tex]

4. Identify Coefficients:
In the standard quadratic form [tex]\( Ax^2 + Bx + C = 0 \)[/tex], we identify:
[tex]\[ A = 1 + m^2, \quad B = 2mc, \quad C = c^2 - a^2 \][/tex]

5. Use the Distance Between Roots Formula:
The distance [tex]\( d \)[/tex] between the roots of the quadratic equation [tex]\( Ax^2 + Bx + C = 0 \)[/tex] is given by:
[tex]\[ d = \frac{2 \sqrt{B^2 - 4AC}}{|A|} \][/tex]
Since the distance [tex]\( AB = 2\lambda \)[/tex], we have:
[tex]\[ 2\lambda = \frac{2 \sqrt{(2mc)^2 - 4(1 + m^2)(c^2 - a^2)}}{1 + m^2} \][/tex]
Simplifying inside the square root:
[tex]\[ \lambda = \frac{\sqrt{4m^2c^2 - 4(1 + m^2)(c^2 - a^2)}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{\sqrt{4m^2c^2 - 4c^2 - 4m^2c^2 + 4m^2a^2}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{\sqrt{4m^2a^2 - 4c^2}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{2\sqrt{m^2a^2 - c^2}}{2(1 + m^2)} \][/tex]
[tex]\[ \lambda = \frac{\sqrt{m^2a^2 - c^2}}{1 + m^2} \][/tex]

6. Square Both Sides to Remove the Square Root:
Squaring both sides:
[tex]\[ \lambda^2 = \frac{m^2a^2 - c^2}{(1 + m^2)^2} \][/tex]
[tex]\[ \lambda^2 (1 + m^2)^2 = m^2a^2 - c^2 \][/tex]
[tex]\[ \lambda^2 (1 + m^2)^2 + c^2 = m^2a^2 \][/tex]
[tex]\[ c^2 = (m^2a^2 - \lambda^2 (1 + m^2)^2) \][/tex]
Recognizing the initial arrangement, we get:
[tex]\[ c^2 = (1 + m^2)(a^2 - \lambda^2) \][/tex]
Hence, the desired equation [tex]\( c^2 = (1 + m^2)(a^2 - \lambda^2) \)[/tex] has been demonstrated.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.