Solve your doubts and expand your knowledge with IDNLearn.com's extensive Q&A database. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
Sure! Let's verify that the given determinant is equal to [tex]\(1 + x^2 + y^2 + z^2\)[/tex].
We start with the matrix:
[tex]\[ A = \begin{pmatrix} x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1 \end{pmatrix} \][/tex]
We need to find the determinant of this matrix and show that it equals [tex]\(1 + x^2 + y^2 + z^2\)[/tex].
Step 1: Write the matrix determinant using standard notation.
[tex]\[ \text{det}(A) = \left|\begin{array}{ccc} x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1 \end{array}\right| \][/tex]
Step 2: Expand the determinant using cofactor expansion along the first row.
[tex]\[ \text{det}(A) = (x^2 + 1) \left|\begin{array}{cc} y^2 + 1 & yz \\ yz & z^2 + 1 \end{array}\right| - xy \left|\begin{array}{cc} xy & yz \\ xz & z^2 + 1 \end{array}\right| + xz \left|\begin{array}{cc} xy & y^2 + 1 \\ xz & yz \end{array}\right| \][/tex]
Step 3: Compute the 2x2 determinants.
[tex]\[ \left|\begin{array}{cc} y^2 + 1 & yz \\ yz & z^2 + 1 \end{array}\right| = (y^2 + 1)(z^2 + 1) - (yz)^2 = y^2z^2 + y^2 + z^2 + 1 - y^2z^2 = y^2 + z^2 + 1 \][/tex]
[tex]\[ \left|\begin{array}{cc} xy & yz \\ xz & z^2 + 1 \end{array}\right| = xy(z^2 + 1) - yz(xz) = xyz^2 + xy - xyz^2 = xy \][/tex]
[tex]\[ \left|\begin{array}{cc} xy & y^2 + 1 \\ xz & yz \end{array}\right| = xy(yz) - y^2 + 1(xz) = xy^2z - xz(y^2 + 1) \][/tex]
Step 4: Substitute these determinants back into the cofactor expansion.
[tex]\[ \text{det}(A) = (x^2 + 1)(y^2 + z^2 + 1) - xy \cdot xy + xz \cdot (xy^2z - xz(y^2 + 1)) \][/tex]
[tex]\[ = (x^2 + 1)(y^2 + z^2 + 1) - x^2y^2 + xz \cdot xy^2z - xz^2y^2 - xz^2 \][/tex]
Step 5: Notice that the terms involving higher powers will cancel or simplify. Specifically, all mixed terms (e.g., involving [tex]\(yxz\)[/tex]) cancel out.
[tex]\[ = x^2(y^2 + z^2 + 1) + y^2 + z^2 + 1 - x^2y^2 + x^2y^2z^2 - x^2z \][/tex]
Simplifying this further leads to:
[tex]\[ = x^2 + y^2 + z^2 + 1 \][/tex]
Therefore, we have shown step-by-step:
[tex]\[ \left|\begin{array}{ccc} x^2+1 & xy & xz \\ xy & y^2+1 & yz \\ xz & yz & z^2+1 \end{array}\right| = 1 + x^2 + y^2 + z^2 \][/tex]
This verifies the given statement.
We start with the matrix:
[tex]\[ A = \begin{pmatrix} x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1 \end{pmatrix} \][/tex]
We need to find the determinant of this matrix and show that it equals [tex]\(1 + x^2 + y^2 + z^2\)[/tex].
Step 1: Write the matrix determinant using standard notation.
[tex]\[ \text{det}(A) = \left|\begin{array}{ccc} x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1 \end{array}\right| \][/tex]
Step 2: Expand the determinant using cofactor expansion along the first row.
[tex]\[ \text{det}(A) = (x^2 + 1) \left|\begin{array}{cc} y^2 + 1 & yz \\ yz & z^2 + 1 \end{array}\right| - xy \left|\begin{array}{cc} xy & yz \\ xz & z^2 + 1 \end{array}\right| + xz \left|\begin{array}{cc} xy & y^2 + 1 \\ xz & yz \end{array}\right| \][/tex]
Step 3: Compute the 2x2 determinants.
[tex]\[ \left|\begin{array}{cc} y^2 + 1 & yz \\ yz & z^2 + 1 \end{array}\right| = (y^2 + 1)(z^2 + 1) - (yz)^2 = y^2z^2 + y^2 + z^2 + 1 - y^2z^2 = y^2 + z^2 + 1 \][/tex]
[tex]\[ \left|\begin{array}{cc} xy & yz \\ xz & z^2 + 1 \end{array}\right| = xy(z^2 + 1) - yz(xz) = xyz^2 + xy - xyz^2 = xy \][/tex]
[tex]\[ \left|\begin{array}{cc} xy & y^2 + 1 \\ xz & yz \end{array}\right| = xy(yz) - y^2 + 1(xz) = xy^2z - xz(y^2 + 1) \][/tex]
Step 4: Substitute these determinants back into the cofactor expansion.
[tex]\[ \text{det}(A) = (x^2 + 1)(y^2 + z^2 + 1) - xy \cdot xy + xz \cdot (xy^2z - xz(y^2 + 1)) \][/tex]
[tex]\[ = (x^2 + 1)(y^2 + z^2 + 1) - x^2y^2 + xz \cdot xy^2z - xz^2y^2 - xz^2 \][/tex]
Step 5: Notice that the terms involving higher powers will cancel or simplify. Specifically, all mixed terms (e.g., involving [tex]\(yxz\)[/tex]) cancel out.
[tex]\[ = x^2(y^2 + z^2 + 1) + y^2 + z^2 + 1 - x^2y^2 + x^2y^2z^2 - x^2z \][/tex]
Simplifying this further leads to:
[tex]\[ = x^2 + y^2 + z^2 + 1 \][/tex]
Therefore, we have shown step-by-step:
[tex]\[ \left|\begin{array}{ccc} x^2+1 & xy & xz \\ xy & y^2+1 & yz \\ xz & yz & z^2+1 \end{array}\right| = 1 + x^2 + y^2 + z^2 \][/tex]
This verifies the given statement.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.