From science to arts, IDNLearn.com has the answers to all your questions. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
To verify that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we follow these steps:
### Step 1: Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Let
[tex]\[ A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \][/tex]
and
[tex]\[ B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}. \][/tex]
### Step 2: Calculate the inverse of [tex]\(A\)[/tex]
To find [tex]\(A^{-1}\)[/tex], we use the formula for the inverse of a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \][/tex]
where [tex]\(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex].
For [tex]\(A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 2\)[/tex]
- [tex]\(\text{det}(A) = ad - bc = (1)(2) - (1)(0) = 2\)[/tex].
Thus,
[tex]\[ A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}. \][/tex]
### Step 3: Calculate the inverse of [tex]\(B\)[/tex]
Similarly, for [tex]\(B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 2\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 3\)[/tex]
- [tex]\(\text{det}(B) = ad - bc = (1)(3) - (2)(0) = 3\)[/tex].
Thus,
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix}. \][/tex]
### Step 4: Calculate the product of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now, we compute [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + 1 \cdot 0) & (1 \cdot 2 + 1 \cdot 3) \\ (0 \cdot 1 + 2 \cdot 0) & (0 \cdot 2 + 2 \cdot 3) \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}. \][/tex]
### Step 5: Calculate the inverse of [tex]\(AB\)[/tex]
For [tex]\(AB = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 5\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 6\)[/tex]
- [tex]\(\text{det}(AB) = ad - bc = (1)(6) - (5)(0) = 6\)[/tex].
Thus,
[tex]\[ (AB)^{-1} = \frac{1}{6} \begin{pmatrix} 6 & -5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 6: Calculate [tex]\( B^{-1}A^{-1} \)[/tex]
Now, we compute [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + -\frac{2}{3} \cdot 0) & (1 \cdot -\frac{1}{2} + -\frac{2}{3} \frac{1}{2}) \\ (0 \cdot 1 + \frac{1}{3} \cdot 0) & (0 \cdot -\frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 7: Compare [tex]\((AB)^{-1}\)[/tex] and [tex]\(B^{-1}A^{-1}\)[/tex]
From our calculations, we see that:
[tex]\[ (AB)^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}, \][/tex]
and
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
Since [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex], we have verified that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex].
### Step 1: Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Let
[tex]\[ A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \][/tex]
and
[tex]\[ B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}. \][/tex]
### Step 2: Calculate the inverse of [tex]\(A\)[/tex]
To find [tex]\(A^{-1}\)[/tex], we use the formula for the inverse of a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \][/tex]
where [tex]\(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex].
For [tex]\(A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 2\)[/tex]
- [tex]\(\text{det}(A) = ad - bc = (1)(2) - (1)(0) = 2\)[/tex].
Thus,
[tex]\[ A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}. \][/tex]
### Step 3: Calculate the inverse of [tex]\(B\)[/tex]
Similarly, for [tex]\(B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 2\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 3\)[/tex]
- [tex]\(\text{det}(B) = ad - bc = (1)(3) - (2)(0) = 3\)[/tex].
Thus,
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix}. \][/tex]
### Step 4: Calculate the product of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now, we compute [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + 1 \cdot 0) & (1 \cdot 2 + 1 \cdot 3) \\ (0 \cdot 1 + 2 \cdot 0) & (0 \cdot 2 + 2 \cdot 3) \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}. \][/tex]
### Step 5: Calculate the inverse of [tex]\(AB\)[/tex]
For [tex]\(AB = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 5\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 6\)[/tex]
- [tex]\(\text{det}(AB) = ad - bc = (1)(6) - (5)(0) = 6\)[/tex].
Thus,
[tex]\[ (AB)^{-1} = \frac{1}{6} \begin{pmatrix} 6 & -5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 6: Calculate [tex]\( B^{-1}A^{-1} \)[/tex]
Now, we compute [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + -\frac{2}{3} \cdot 0) & (1 \cdot -\frac{1}{2} + -\frac{2}{3} \frac{1}{2}) \\ (0 \cdot 1 + \frac{1}{3} \cdot 0) & (0 \cdot -\frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 7: Compare [tex]\((AB)^{-1}\)[/tex] and [tex]\(B^{-1}A^{-1}\)[/tex]
From our calculations, we see that:
[tex]\[ (AB)^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}, \][/tex]
and
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
Since [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex], we have verified that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.