Discover new information and insights with the help of IDNLearn.com. Get prompt and accurate answers to your questions from our experts who are always ready to help.
Sagot :
To verify that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we follow these steps:
### Step 1: Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Let
[tex]\[ A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \][/tex]
and
[tex]\[ B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}. \][/tex]
### Step 2: Calculate the inverse of [tex]\(A\)[/tex]
To find [tex]\(A^{-1}\)[/tex], we use the formula for the inverse of a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \][/tex]
where [tex]\(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex].
For [tex]\(A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 2\)[/tex]
- [tex]\(\text{det}(A) = ad - bc = (1)(2) - (1)(0) = 2\)[/tex].
Thus,
[tex]\[ A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}. \][/tex]
### Step 3: Calculate the inverse of [tex]\(B\)[/tex]
Similarly, for [tex]\(B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 2\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 3\)[/tex]
- [tex]\(\text{det}(B) = ad - bc = (1)(3) - (2)(0) = 3\)[/tex].
Thus,
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix}. \][/tex]
### Step 4: Calculate the product of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now, we compute [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + 1 \cdot 0) & (1 \cdot 2 + 1 \cdot 3) \\ (0 \cdot 1 + 2 \cdot 0) & (0 \cdot 2 + 2 \cdot 3) \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}. \][/tex]
### Step 5: Calculate the inverse of [tex]\(AB\)[/tex]
For [tex]\(AB = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 5\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 6\)[/tex]
- [tex]\(\text{det}(AB) = ad - bc = (1)(6) - (5)(0) = 6\)[/tex].
Thus,
[tex]\[ (AB)^{-1} = \frac{1}{6} \begin{pmatrix} 6 & -5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 6: Calculate [tex]\( B^{-1}A^{-1} \)[/tex]
Now, we compute [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + -\frac{2}{3} \cdot 0) & (1 \cdot -\frac{1}{2} + -\frac{2}{3} \frac{1}{2}) \\ (0 \cdot 1 + \frac{1}{3} \cdot 0) & (0 \cdot -\frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 7: Compare [tex]\((AB)^{-1}\)[/tex] and [tex]\(B^{-1}A^{-1}\)[/tex]
From our calculations, we see that:
[tex]\[ (AB)^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}, \][/tex]
and
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
Since [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex], we have verified that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex].
### Step 1: Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Let
[tex]\[ A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \][/tex]
and
[tex]\[ B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}. \][/tex]
### Step 2: Calculate the inverse of [tex]\(A\)[/tex]
To find [tex]\(A^{-1}\)[/tex], we use the formula for the inverse of a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \][/tex]
where [tex]\(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex].
For [tex]\(A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 2\)[/tex]
- [tex]\(\text{det}(A) = ad - bc = (1)(2) - (1)(0) = 2\)[/tex].
Thus,
[tex]\[ A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}. \][/tex]
### Step 3: Calculate the inverse of [tex]\(B\)[/tex]
Similarly, for [tex]\(B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 2\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 3\)[/tex]
- [tex]\(\text{det}(B) = ad - bc = (1)(3) - (2)(0) = 3\)[/tex].
Thus,
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix}. \][/tex]
### Step 4: Calculate the product of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now, we compute [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + 1 \cdot 0) & (1 \cdot 2 + 1 \cdot 3) \\ (0 \cdot 1 + 2 \cdot 0) & (0 \cdot 2 + 2 \cdot 3) \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}. \][/tex]
### Step 5: Calculate the inverse of [tex]\(AB\)[/tex]
For [tex]\(AB = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 5\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 6\)[/tex]
- [tex]\(\text{det}(AB) = ad - bc = (1)(6) - (5)(0) = 6\)[/tex].
Thus,
[tex]\[ (AB)^{-1} = \frac{1}{6} \begin{pmatrix} 6 & -5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 6: Calculate [tex]\( B^{-1}A^{-1} \)[/tex]
Now, we compute [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + -\frac{2}{3} \cdot 0) & (1 \cdot -\frac{1}{2} + -\frac{2}{3} \frac{1}{2}) \\ (0 \cdot 1 + \frac{1}{3} \cdot 0) & (0 \cdot -\frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 7: Compare [tex]\((AB)^{-1}\)[/tex] and [tex]\(B^{-1}A^{-1}\)[/tex]
From our calculations, we see that:
[tex]\[ (AB)^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}, \][/tex]
and
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
Since [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex], we have verified that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.