IDNLearn.com makes it easy to find the right answers to your questions. Get accurate and timely answers to your queries from our extensive network of experienced professionals.
Sagot :
To verify that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we follow these steps:
### Step 1: Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Let
[tex]\[ A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \][/tex]
and
[tex]\[ B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}. \][/tex]
### Step 2: Calculate the inverse of [tex]\(A\)[/tex]
To find [tex]\(A^{-1}\)[/tex], we use the formula for the inverse of a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \][/tex]
where [tex]\(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex].
For [tex]\(A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 2\)[/tex]
- [tex]\(\text{det}(A) = ad - bc = (1)(2) - (1)(0) = 2\)[/tex].
Thus,
[tex]\[ A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}. \][/tex]
### Step 3: Calculate the inverse of [tex]\(B\)[/tex]
Similarly, for [tex]\(B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 2\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 3\)[/tex]
- [tex]\(\text{det}(B) = ad - bc = (1)(3) - (2)(0) = 3\)[/tex].
Thus,
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix}. \][/tex]
### Step 4: Calculate the product of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now, we compute [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + 1 \cdot 0) & (1 \cdot 2 + 1 \cdot 3) \\ (0 \cdot 1 + 2 \cdot 0) & (0 \cdot 2 + 2 \cdot 3) \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}. \][/tex]
### Step 5: Calculate the inverse of [tex]\(AB\)[/tex]
For [tex]\(AB = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 5\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 6\)[/tex]
- [tex]\(\text{det}(AB) = ad - bc = (1)(6) - (5)(0) = 6\)[/tex].
Thus,
[tex]\[ (AB)^{-1} = \frac{1}{6} \begin{pmatrix} 6 & -5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 6: Calculate [tex]\( B^{-1}A^{-1} \)[/tex]
Now, we compute [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + -\frac{2}{3} \cdot 0) & (1 \cdot -\frac{1}{2} + -\frac{2}{3} \frac{1}{2}) \\ (0 \cdot 1 + \frac{1}{3} \cdot 0) & (0 \cdot -\frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 7: Compare [tex]\((AB)^{-1}\)[/tex] and [tex]\(B^{-1}A^{-1}\)[/tex]
From our calculations, we see that:
[tex]\[ (AB)^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}, \][/tex]
and
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
Since [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex], we have verified that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex].
### Step 1: Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Let
[tex]\[ A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \][/tex]
and
[tex]\[ B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}. \][/tex]
### Step 2: Calculate the inverse of [tex]\(A\)[/tex]
To find [tex]\(A^{-1}\)[/tex], we use the formula for the inverse of a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \][/tex]
where [tex]\(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex].
For [tex]\(A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 2\)[/tex]
- [tex]\(\text{det}(A) = ad - bc = (1)(2) - (1)(0) = 2\)[/tex].
Thus,
[tex]\[ A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}. \][/tex]
### Step 3: Calculate the inverse of [tex]\(B\)[/tex]
Similarly, for [tex]\(B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 2\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 3\)[/tex]
- [tex]\(\text{det}(B) = ad - bc = (1)(3) - (2)(0) = 3\)[/tex].
Thus,
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix}. \][/tex]
### Step 4: Calculate the product of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now, we compute [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + 1 \cdot 0) & (1 \cdot 2 + 1 \cdot 3) \\ (0 \cdot 1 + 2 \cdot 0) & (0 \cdot 2 + 2 \cdot 3) \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}. \][/tex]
### Step 5: Calculate the inverse of [tex]\(AB\)[/tex]
For [tex]\(AB = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 5\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 6\)[/tex]
- [tex]\(\text{det}(AB) = ad - bc = (1)(6) - (5)(0) = 6\)[/tex].
Thus,
[tex]\[ (AB)^{-1} = \frac{1}{6} \begin{pmatrix} 6 & -5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 6: Calculate [tex]\( B^{-1}A^{-1} \)[/tex]
Now, we compute [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + -\frac{2}{3} \cdot 0) & (1 \cdot -\frac{1}{2} + -\frac{2}{3} \frac{1}{2}) \\ (0 \cdot 1 + \frac{1}{3} \cdot 0) & (0 \cdot -\frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 7: Compare [tex]\((AB)^{-1}\)[/tex] and [tex]\(B^{-1}A^{-1}\)[/tex]
From our calculations, we see that:
[tex]\[ (AB)^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}, \][/tex]
and
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
Since [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex], we have verified that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.