Discover the best answers to your questions with the help of IDNLearn.com. Get the information you need from our community of experts, who provide detailed and trustworthy answers.
Sagot :
To verify that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we follow these steps:
### Step 1: Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Let
[tex]\[ A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \][/tex]
and
[tex]\[ B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}. \][/tex]
### Step 2: Calculate the inverse of [tex]\(A\)[/tex]
To find [tex]\(A^{-1}\)[/tex], we use the formula for the inverse of a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \][/tex]
where [tex]\(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex].
For [tex]\(A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 2\)[/tex]
- [tex]\(\text{det}(A) = ad - bc = (1)(2) - (1)(0) = 2\)[/tex].
Thus,
[tex]\[ A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}. \][/tex]
### Step 3: Calculate the inverse of [tex]\(B\)[/tex]
Similarly, for [tex]\(B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 2\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 3\)[/tex]
- [tex]\(\text{det}(B) = ad - bc = (1)(3) - (2)(0) = 3\)[/tex].
Thus,
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix}. \][/tex]
### Step 4: Calculate the product of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now, we compute [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + 1 \cdot 0) & (1 \cdot 2 + 1 \cdot 3) \\ (0 \cdot 1 + 2 \cdot 0) & (0 \cdot 2 + 2 \cdot 3) \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}. \][/tex]
### Step 5: Calculate the inverse of [tex]\(AB\)[/tex]
For [tex]\(AB = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 5\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 6\)[/tex]
- [tex]\(\text{det}(AB) = ad - bc = (1)(6) - (5)(0) = 6\)[/tex].
Thus,
[tex]\[ (AB)^{-1} = \frac{1}{6} \begin{pmatrix} 6 & -5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 6: Calculate [tex]\( B^{-1}A^{-1} \)[/tex]
Now, we compute [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + -\frac{2}{3} \cdot 0) & (1 \cdot -\frac{1}{2} + -\frac{2}{3} \frac{1}{2}) \\ (0 \cdot 1 + \frac{1}{3} \cdot 0) & (0 \cdot -\frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 7: Compare [tex]\((AB)^{-1}\)[/tex] and [tex]\(B^{-1}A^{-1}\)[/tex]
From our calculations, we see that:
[tex]\[ (AB)^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}, \][/tex]
and
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
Since [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex], we have verified that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex].
### Step 1: Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Let
[tex]\[ A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \][/tex]
and
[tex]\[ B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}. \][/tex]
### Step 2: Calculate the inverse of [tex]\(A\)[/tex]
To find [tex]\(A^{-1}\)[/tex], we use the formula for the inverse of a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \][/tex]
where [tex]\(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex].
For [tex]\(A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 2\)[/tex]
- [tex]\(\text{det}(A) = ad - bc = (1)(2) - (1)(0) = 2\)[/tex].
Thus,
[tex]\[ A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}. \][/tex]
### Step 3: Calculate the inverse of [tex]\(B\)[/tex]
Similarly, for [tex]\(B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 2\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 3\)[/tex]
- [tex]\(\text{det}(B) = ad - bc = (1)(3) - (2)(0) = 3\)[/tex].
Thus,
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix}. \][/tex]
### Step 4: Calculate the product of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now, we compute [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + 1 \cdot 0) & (1 \cdot 2 + 1 \cdot 3) \\ (0 \cdot 1 + 2 \cdot 0) & (0 \cdot 2 + 2 \cdot 3) \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}. \][/tex]
### Step 5: Calculate the inverse of [tex]\(AB\)[/tex]
For [tex]\(AB = \begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}\)[/tex]:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 5\)[/tex]
- [tex]\(c = 0\)[/tex]
- [tex]\(d = 6\)[/tex]
- [tex]\(\text{det}(AB) = ad - bc = (1)(6) - (5)(0) = 6\)[/tex].
Thus,
[tex]\[ (AB)^{-1} = \frac{1}{6} \begin{pmatrix} 6 & -5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 6: Calculate [tex]\( B^{-1}A^{-1} \)[/tex]
Now, we compute [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + -\frac{2}{3} \cdot 0) & (1 \cdot -\frac{1}{2} + -\frac{2}{3} \frac{1}{2}) \\ (0 \cdot 1 + \frac{1}{3} \cdot 0) & (0 \cdot -\frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
### Step 7: Compare [tex]\((AB)^{-1}\)[/tex] and [tex]\(B^{-1}A^{-1}\)[/tex]
From our calculations, we see that:
[tex]\[ (AB)^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}, \][/tex]
and
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 1 & -\frac{5}{6} \\ 0 & \frac{1}{6} \end{pmatrix}. \][/tex]
Since [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex], we have verified that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.