IDNLearn.com offers expert insights and community wisdom to answer your queries. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
Sure, let's address each part of the question step-by-step:
### Part (a)
Express [tex]\( 8.0\dot{5} \)[/tex] as a rational fraction using an infinite geometric series
First, let's rewrite the infinite decimal [tex]\( 8.0\dot{5} \)[/tex] as a geometric series.
[tex]\[ 8.0\dot{5} = 8 + 0.5555\ldots \][/tex]
We can express [tex]\( 0.5555\ldots \)[/tex] as a geometric series where the first term [tex]\( a \)[/tex] is [tex]\( 0.5 \)[/tex] and the common ratio [tex]\( r \)[/tex] is [tex]\( 0.1 \)[/tex].
So:
[tex]\[ 0.5555\ldots = 0.5 + 0.05 + 0.005 + \cdots \][/tex]
This is an infinite geometric series where:
[tex]\[ a = 0.5, \quad r = 0.1 \][/tex]
The sum [tex]\( S \)[/tex] of an infinite geometric series is given by:
[tex]\[ S = \frac{a}{1-r} \][/tex]
Thus,
[tex]\[ S = \frac{0.5}{1-0.1} = \frac{0.5}{0.9} = \frac{0.5}{\frac{9}{10}} = \frac{0.5 \times 10}{9} = \frac{5}{9} \][/tex]
Therefore,
[tex]\[ 0.5555\ldots = \frac{5}{9} \][/tex]
So,
[tex]\[ 8.0\dot{5} = 8 + \frac{5}{9} = \frac{72}{9} + \frac{5}{9} = \frac{77}{9} \][/tex]
### Part (b)
Determine the summation of the first [tex]\( n \)[/tex] terms of the series if [tex]\( a = 7 \)[/tex], [tex]\( b = 77 \)[/tex], and [tex]\( c = 777 \)[/tex]
Here we have the numbers [tex]\( a = 7 \)[/tex], [tex]\( b = 77 \)[/tex], and [tex]\( c = 777 \)[/tex].
Recognize the pattern in the series: [tex]\( a_n = 7 \times (10^n - 1)/9 \)[/tex].
For example:
- [tex]\( a_1 = 7 \)[/tex]
- [tex]\( a_2 = 77 \)[/tex]
- [tex]\( a_3 = 777 \)[/tex]
To find the sum of the first [tex]\( n \)[/tex] terms of this series:
[tex]\[ S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n \frac{7 (10^k - 1)}{9} \][/tex]
Let's simplify this:
[tex]\[ S_n = \frac{7}{9} \sum_{k=1}^n (10^k - 1) \][/tex]
[tex]\[ S_n = \frac{7}{9} \left( \sum_{k=1}^n 10^k - \sum_{k=1}^n 1 \right) \][/tex]
The sum of the first [tex]\( n \)[/tex] terms of the series [tex]\( 10^k \)[/tex] is:
[tex]\[ \sum_{k=1}^n 10^k = 10(1) + 10(2) + \cdots + 10(n) = 10 \left( \frac{10^n - 1}{9} \right) \][/tex]
The sum [tex]\( \sum_{k=1}^n 1 \)[/tex] is just [tex]\( n \)[/tex].
Therefore:
[tex]\[ S_n = \frac{7}{9} \left( 10 \times \frac{10^n - 1}{9} - n \right) \][/tex]
[tex]\[ S_n = \frac{7}{9} \left( \frac{10 (10^n - 1)}{9} - n \right) \][/tex]
[tex]\[ S_n = \frac{7}{81} (10^{n+1} - 10 - 9n) \][/tex]
So, the sum of the first [tex]\( n \)[/tex] terms of the series is:
[tex]\[ S_n = \frac{7}{81} ( 10^{n+1} - 10 - 9n) \][/tex]
### Part (c)
Impose a condition on [tex]\( x \)[/tex] for the sum of the infinite series and calculate the sum of the given series
The given series is:
[tex]\[ 1 + (7x+1)^{-1} + (7x+1)^{-2} + (7x+1)^{-3} + \cdots \][/tex]
For this to be a geometric series, the common ratio must satisfy [tex]\( |r| < 1 \)[/tex].
Here, the common ratio [tex]\( r = \frac{1}{7x+1} \)[/tex], so:
[tex]\[ \left| \frac{1}{7x+1} \right| < 1 \][/tex]
This gives:
[tex]\[ -1 < \frac{1}{7x+1} < 1 \][/tex]
Simplifying:
[tex]\[ 7x+1 > 1 \quad \text{and} \quad 7x+1 < -1 \][/tex]
The first inequality:
[tex]\[ 7x + 1 > 1 \][/tex]
[tex]\[ 7x > 0 \][/tex]
[tex]\[ x > 0 \][/tex]
The second inequality:
[tex]\[ 7x + 1 < -1 \][/tex]
[tex]\[ 7x < -2 \][/tex]
[tex]\[ x < -\frac{2}{7} \][/tex]
So, for the series to converge, [tex]\( x \)[/tex] must be:
[tex]\[ x < -\frac{2}{7} \quad \text{or} \quad x > 0 \][/tex]
To calculate the sum of the given series, we use the formula for the sum of an infinite geometric series:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
Here, [tex]\( a = 1 \)[/tex] and [tex]\( r = \frac{1}{7x+1} \)[/tex].
Thus, the sum of the series is:
[tex]\[ S = \frac{1}{1 - \frac{1}{7x+1}} \][/tex]
Simplify the denominator:
[tex]\[ S = \frac{1}{\frac{7x+1-1}{7x+1}} = \frac{1}{\frac{7x}{7x+1}} = \frac{7x+1}{7x} = 1 + \frac{1}{7x} \][/tex]
So the sum of the given series is:
[tex]\[ S = 1 + \frac{1}{7x} \][/tex]
### Part (a)
Express [tex]\( 8.0\dot{5} \)[/tex] as a rational fraction using an infinite geometric series
First, let's rewrite the infinite decimal [tex]\( 8.0\dot{5} \)[/tex] as a geometric series.
[tex]\[ 8.0\dot{5} = 8 + 0.5555\ldots \][/tex]
We can express [tex]\( 0.5555\ldots \)[/tex] as a geometric series where the first term [tex]\( a \)[/tex] is [tex]\( 0.5 \)[/tex] and the common ratio [tex]\( r \)[/tex] is [tex]\( 0.1 \)[/tex].
So:
[tex]\[ 0.5555\ldots = 0.5 + 0.05 + 0.005 + \cdots \][/tex]
This is an infinite geometric series where:
[tex]\[ a = 0.5, \quad r = 0.1 \][/tex]
The sum [tex]\( S \)[/tex] of an infinite geometric series is given by:
[tex]\[ S = \frac{a}{1-r} \][/tex]
Thus,
[tex]\[ S = \frac{0.5}{1-0.1} = \frac{0.5}{0.9} = \frac{0.5}{\frac{9}{10}} = \frac{0.5 \times 10}{9} = \frac{5}{9} \][/tex]
Therefore,
[tex]\[ 0.5555\ldots = \frac{5}{9} \][/tex]
So,
[tex]\[ 8.0\dot{5} = 8 + \frac{5}{9} = \frac{72}{9} + \frac{5}{9} = \frac{77}{9} \][/tex]
### Part (b)
Determine the summation of the first [tex]\( n \)[/tex] terms of the series if [tex]\( a = 7 \)[/tex], [tex]\( b = 77 \)[/tex], and [tex]\( c = 777 \)[/tex]
Here we have the numbers [tex]\( a = 7 \)[/tex], [tex]\( b = 77 \)[/tex], and [tex]\( c = 777 \)[/tex].
Recognize the pattern in the series: [tex]\( a_n = 7 \times (10^n - 1)/9 \)[/tex].
For example:
- [tex]\( a_1 = 7 \)[/tex]
- [tex]\( a_2 = 77 \)[/tex]
- [tex]\( a_3 = 777 \)[/tex]
To find the sum of the first [tex]\( n \)[/tex] terms of this series:
[tex]\[ S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n \frac{7 (10^k - 1)}{9} \][/tex]
Let's simplify this:
[tex]\[ S_n = \frac{7}{9} \sum_{k=1}^n (10^k - 1) \][/tex]
[tex]\[ S_n = \frac{7}{9} \left( \sum_{k=1}^n 10^k - \sum_{k=1}^n 1 \right) \][/tex]
The sum of the first [tex]\( n \)[/tex] terms of the series [tex]\( 10^k \)[/tex] is:
[tex]\[ \sum_{k=1}^n 10^k = 10(1) + 10(2) + \cdots + 10(n) = 10 \left( \frac{10^n - 1}{9} \right) \][/tex]
The sum [tex]\( \sum_{k=1}^n 1 \)[/tex] is just [tex]\( n \)[/tex].
Therefore:
[tex]\[ S_n = \frac{7}{9} \left( 10 \times \frac{10^n - 1}{9} - n \right) \][/tex]
[tex]\[ S_n = \frac{7}{9} \left( \frac{10 (10^n - 1)}{9} - n \right) \][/tex]
[tex]\[ S_n = \frac{7}{81} (10^{n+1} - 10 - 9n) \][/tex]
So, the sum of the first [tex]\( n \)[/tex] terms of the series is:
[tex]\[ S_n = \frac{7}{81} ( 10^{n+1} - 10 - 9n) \][/tex]
### Part (c)
Impose a condition on [tex]\( x \)[/tex] for the sum of the infinite series and calculate the sum of the given series
The given series is:
[tex]\[ 1 + (7x+1)^{-1} + (7x+1)^{-2} + (7x+1)^{-3} + \cdots \][/tex]
For this to be a geometric series, the common ratio must satisfy [tex]\( |r| < 1 \)[/tex].
Here, the common ratio [tex]\( r = \frac{1}{7x+1} \)[/tex], so:
[tex]\[ \left| \frac{1}{7x+1} \right| < 1 \][/tex]
This gives:
[tex]\[ -1 < \frac{1}{7x+1} < 1 \][/tex]
Simplifying:
[tex]\[ 7x+1 > 1 \quad \text{and} \quad 7x+1 < -1 \][/tex]
The first inequality:
[tex]\[ 7x + 1 > 1 \][/tex]
[tex]\[ 7x > 0 \][/tex]
[tex]\[ x > 0 \][/tex]
The second inequality:
[tex]\[ 7x + 1 < -1 \][/tex]
[tex]\[ 7x < -2 \][/tex]
[tex]\[ x < -\frac{2}{7} \][/tex]
So, for the series to converge, [tex]\( x \)[/tex] must be:
[tex]\[ x < -\frac{2}{7} \quad \text{or} \quad x > 0 \][/tex]
To calculate the sum of the given series, we use the formula for the sum of an infinite geometric series:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
Here, [tex]\( a = 1 \)[/tex] and [tex]\( r = \frac{1}{7x+1} \)[/tex].
Thus, the sum of the series is:
[tex]\[ S = \frac{1}{1 - \frac{1}{7x+1}} \][/tex]
Simplify the denominator:
[tex]\[ S = \frac{1}{\frac{7x+1-1}{7x+1}} = \frac{1}{\frac{7x}{7x+1}} = \frac{7x+1}{7x} = 1 + \frac{1}{7x} \][/tex]
So the sum of the given series is:
[tex]\[ S = 1 + \frac{1}{7x} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.