Dive into the world of knowledge and get your queries resolved at IDNLearn.com. Ask your questions and receive accurate, in-depth answers from our knowledgeable community members.
Sagot :
Let's solve each equation one by one step-by-step:
### Equation 1: [tex]\(\log (x-1) + \log (5x) = 2\)[/tex]
Using the properties of logarithms, we combine the logs:
[tex]\[ \log((x-1) \cdot 5x) = 2 \][/tex]
[tex]\[ \log(5x^2 - 5x) = 2 \][/tex]
Converting from logarithmic form to exponential form:
[tex]\[ 5x^2 - 5x = 10^2 \][/tex]
[tex]\[ 5x^2 - 5x = 100 \][/tex]
Solving the quadratic equation:
[tex]\[ 5x^2 - 5x - 100 = 0 \][/tex]
[tex]\[ x^2 - x - 20 = 0 \][/tex]
Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ a = 1, \; b = -1, \; c = -20 \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{1 + 80}}{2} \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{81}}{2} \][/tex]
[tex]\[ x = \frac{1 \pm 9}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{10}{2} = 5 \][/tex]
[tex]\[ x = \frac{-8}{2} = -4 \][/tex]
Since [tex]\(x\)[/tex] must satisfy the domain of the logarithms (i.e., [tex]\(x-1 > 0\)[/tex] and [tex]\(5x > 0\)[/tex]), [tex]\(x = -4\)[/tex] is not valid. Therefore, the solution is:
[tex]\[ x = 5 \][/tex]
### Equation 2: [tex]\(\log_4(5x^2 + 2) = \log_4(x + 8)\)[/tex]
Since the logarithms have the same base, we can set the arguments equal to each other:
[tex]\[ 5x^2 + 2 = x + 8 \][/tex]
Rearranging the equation:
[tex]\[ 5x^2 + 2 - x - 8 = 0 \][/tex]
[tex]\[ 5x^2 - x - 6 = 0 \][/tex]
Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ a = 5, \; b = -1, \; c = -6 \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{1 + 120}}{10} \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{121}}{10} \][/tex]
[tex]\[ x = \frac{1 \pm 11}{10} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{12}{10} = 1.2 \][/tex]
[tex]\[ x = \frac{-10}{10} = -1 \][/tex]
[tex]\(x\)[/tex] must be greater than [tex]\(\frac{-8}{5}\)[/tex] since [tex]\(5x^2 + 2 > 0 \geq x + 8\)[/tex].
Thus, [tex]\(x = -1 \)[/tex] will not satisfy this domain.
Therefore, the valid solution is:
[tex]\[ x = 1.2 \][/tex]
### Equation 3: [tex]\(\ln (x+5) = \ln (x-1) + \ln (x+1)\)[/tex]
Using the properties of logarithms, we combine the logs on the right-hand side:
[tex]\[ \ln (x+5) = \ln ((x-1)(x+1)) \][/tex]
[tex]\[ \ln (x+5) = \ln (x^2 - 1) \][/tex]
Equating the arguments of the natural logs:
[tex]\[ x + 5 = x^2 - 1 \][/tex]
Rearranging the equation:
[tex]\[ x^2 - x - 6 = 0 \][/tex]
Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ a = 1, \; b = -1, \; c = -6 \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{1 + 24}}{2} \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{25}}{2} \][/tex]
[tex]\[ x = \frac{1 \pm 5}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{6}{2} = 3 \][/tex]
[tex]\[ x = \frac{-4}{2} = -2 \][/tex]
[tex]\(x\)[/tex] must be greater than 1 in the domain [tex]\(x-1 >0\)[/tex].
Thus, [tex]\(x = -2 \)[/tex] will not satisfy this domain.
Therefore the valid solution is:
[tex]\[ x = 3 \][/tex]
### Equation 4: [tex]\(e^{x^2} = e^{4x + 5}\)[/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ x^2 = 4x + 5 \][/tex]
Rearranging the equation:
[tex]\[ x^2 - 4x - 5 = 0 \][/tex]
Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ a = 1, \; b = -4, \; c = -5 \][/tex]
[tex]\[ x = \frac{4 \pm \sqrt{16 + 20}}{2} \][/tex]
[tex]\[ x = \frac{4 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ x = \frac{4 \pm 6}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{10}{2} = 5 \][/tex]
[tex]\[ x = \frac{-2}{2} = -1 \][/tex]
Hence, the solutions are:
[tex]\[ x = 5 \; \text{and} \; x = -1 \][/tex]
### Matching Solutions:
[tex]\[ \begin{array}{lcl} \log (x-1)+\log 5x=2 & : & x = 5 \\ \log_4(5x^2 + 2) = \log_4(x + 8) & : & x = 1.2 \\ \ln (x+5) = \ln (x-1) + \ln (x+1) & : & x = 3 \\ e^{x^2} = e^{4x+5} & : & x = 5 \; \text{and} \; x = -1 \\ \end{array} \][/tex]
These matchings pair the equations with their respective solutions effectively.
### Equation 1: [tex]\(\log (x-1) + \log (5x) = 2\)[/tex]
Using the properties of logarithms, we combine the logs:
[tex]\[ \log((x-1) \cdot 5x) = 2 \][/tex]
[tex]\[ \log(5x^2 - 5x) = 2 \][/tex]
Converting from logarithmic form to exponential form:
[tex]\[ 5x^2 - 5x = 10^2 \][/tex]
[tex]\[ 5x^2 - 5x = 100 \][/tex]
Solving the quadratic equation:
[tex]\[ 5x^2 - 5x - 100 = 0 \][/tex]
[tex]\[ x^2 - x - 20 = 0 \][/tex]
Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ a = 1, \; b = -1, \; c = -20 \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{1 + 80}}{2} \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{81}}{2} \][/tex]
[tex]\[ x = \frac{1 \pm 9}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{10}{2} = 5 \][/tex]
[tex]\[ x = \frac{-8}{2} = -4 \][/tex]
Since [tex]\(x\)[/tex] must satisfy the domain of the logarithms (i.e., [tex]\(x-1 > 0\)[/tex] and [tex]\(5x > 0\)[/tex]), [tex]\(x = -4\)[/tex] is not valid. Therefore, the solution is:
[tex]\[ x = 5 \][/tex]
### Equation 2: [tex]\(\log_4(5x^2 + 2) = \log_4(x + 8)\)[/tex]
Since the logarithms have the same base, we can set the arguments equal to each other:
[tex]\[ 5x^2 + 2 = x + 8 \][/tex]
Rearranging the equation:
[tex]\[ 5x^2 + 2 - x - 8 = 0 \][/tex]
[tex]\[ 5x^2 - x - 6 = 0 \][/tex]
Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ a = 5, \; b = -1, \; c = -6 \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{1 + 120}}{10} \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{121}}{10} \][/tex]
[tex]\[ x = \frac{1 \pm 11}{10} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{12}{10} = 1.2 \][/tex]
[tex]\[ x = \frac{-10}{10} = -1 \][/tex]
[tex]\(x\)[/tex] must be greater than [tex]\(\frac{-8}{5}\)[/tex] since [tex]\(5x^2 + 2 > 0 \geq x + 8\)[/tex].
Thus, [tex]\(x = -1 \)[/tex] will not satisfy this domain.
Therefore, the valid solution is:
[tex]\[ x = 1.2 \][/tex]
### Equation 3: [tex]\(\ln (x+5) = \ln (x-1) + \ln (x+1)\)[/tex]
Using the properties of logarithms, we combine the logs on the right-hand side:
[tex]\[ \ln (x+5) = \ln ((x-1)(x+1)) \][/tex]
[tex]\[ \ln (x+5) = \ln (x^2 - 1) \][/tex]
Equating the arguments of the natural logs:
[tex]\[ x + 5 = x^2 - 1 \][/tex]
Rearranging the equation:
[tex]\[ x^2 - x - 6 = 0 \][/tex]
Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ a = 1, \; b = -1, \; c = -6 \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{1 + 24}}{2} \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{25}}{2} \][/tex]
[tex]\[ x = \frac{1 \pm 5}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{6}{2} = 3 \][/tex]
[tex]\[ x = \frac{-4}{2} = -2 \][/tex]
[tex]\(x\)[/tex] must be greater than 1 in the domain [tex]\(x-1 >0\)[/tex].
Thus, [tex]\(x = -2 \)[/tex] will not satisfy this domain.
Therefore the valid solution is:
[tex]\[ x = 3 \][/tex]
### Equation 4: [tex]\(e^{x^2} = e^{4x + 5}\)[/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ x^2 = 4x + 5 \][/tex]
Rearranging the equation:
[tex]\[ x^2 - 4x - 5 = 0 \][/tex]
Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ a = 1, \; b = -4, \; c = -5 \][/tex]
[tex]\[ x = \frac{4 \pm \sqrt{16 + 20}}{2} \][/tex]
[tex]\[ x = \frac{4 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ x = \frac{4 \pm 6}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{10}{2} = 5 \][/tex]
[tex]\[ x = \frac{-2}{2} = -1 \][/tex]
Hence, the solutions are:
[tex]\[ x = 5 \; \text{and} \; x = -1 \][/tex]
### Matching Solutions:
[tex]\[ \begin{array}{lcl} \log (x-1)+\log 5x=2 & : & x = 5 \\ \log_4(5x^2 + 2) = \log_4(x + 8) & : & x = 1.2 \\ \ln (x+5) = \ln (x-1) + \ln (x+1) & : & x = 3 \\ e^{x^2} = e^{4x+5} & : & x = 5 \; \text{and} \; x = -1 \\ \end{array} \][/tex]
These matchings pair the equations with their respective solutions effectively.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.