Find expert answers and community support for all your questions on IDNLearn.com. Our platform offers comprehensive and accurate responses to help you make informed decisions on any topic.
Sagot :
Certainly! Let's solve the problem by breaking it down into its two parts.
### Part (a)
#### Calculating the Average Induced EMF
1. Given Values:
- Radius of the circular coil, [tex]\( r = 0.2 \)[/tex] meters (20 cm)
- Magnetic field strength, [tex]\( B = 0.2 \)[/tex] Teslas (T)
- Time interval, [tex]\( \Delta t = 0.5 \)[/tex] seconds (s)
2. Calculate the Area of the Coil:
The area [tex]\( A \)[/tex] of a circle is given by:
[tex]\[ A = \pi \times r^2 \][/tex]
Substituting the given radius:
[tex]\[ A = \pi \times (0.2)^2 = 0.04\pi \, \text{m}^2 \][/tex]
3. Initial Magnetic Flux:
Magnetic flux [tex]\( \Phi \)[/tex] through the coil is given by:
[tex]\[ \Phi = B \times A \][/tex]
[tex]\[ \Phi_{\text{initial}} = 0.2 \times 0.04\pi = 0.008\pi \, \text{Wb} \, (\text{Weber}) \][/tex]
4. Final Magnetic Flux:
Since the coil is pulled out of the magnetic field, the final magnetic flux [tex]\( \Phi_{\text{final}} \)[/tex] is zero:
[tex]\[ \Phi_{\text{final}} = 0 \, \text{Wb} \][/tex]
5. Change in Magnetic Flux:
The change in magnetic flux [tex]\( \Delta \Phi \)[/tex] is:
[tex]\[ \Delta \Phi = \Phi_{\text{final}} - \Phi_{\text{initial}} = 0 - 0.008\pi = -0.008\pi \, \text{Wb} \][/tex]
6. Average Induced EMF:
According to Faraday's Law of Induction, the induced EMF [tex]\( \mathcal{E} \)[/tex] is given by:
[tex]\[ \mathcal{E} = -\frac{\Delta \Phi}{\Delta t} \][/tex]
Substituting the values:
[tex]\[ \mathcal{E} = -\left(-\frac{0.008\pi}{0.5}\right) = \frac{0.008\pi}{0.5} = 0.016\pi \, \text{V} \approx 0.0503 \, \text{V} \][/tex]
Hence, the average induced EMF during this interval is approximately [tex]\( 0.0503 \, \text{V} \)[/tex].
### Part (b)
#### Calculating the Motional EMF
1. Given Values:
- Length of the bar, [tex]\( l = 2 \)[/tex] meters (m)
- Speed of the bar, [tex]\( v = 5 \)[/tex] meters per second (m/s)
- Magnetic field strength, [tex]\( B = 0.2 \)[/tex] Teslas (T)
2. Motional EMF:
The motional EMF [tex]\( \mathcal{E}_{\text{motional}} \)[/tex] is given by:
[tex]\[ \mathcal{E}_{\text{motional}} = B \times l \times v \][/tex]
Substituting the values:
[tex]\[ \mathcal{E}_{\text{motional}} = 0.2 \times 2 \times 5 = 2 \, \text{V} \][/tex]
Therefore, the motional EMF induced in the bar and rails is [tex]\( 2 \, \text{V} \)[/tex].
### Summary:
a) The average induced EMF during the interval is approximately [tex]\( 0.0503 \, \text{V} \)[/tex] or [tex]\( 0.016\pi \, \text{V} \)[/tex].
b) The motional EMF induced in the bar and rails is [tex]\( 2 \, \text{V} \)[/tex].
### Part (a)
#### Calculating the Average Induced EMF
1. Given Values:
- Radius of the circular coil, [tex]\( r = 0.2 \)[/tex] meters (20 cm)
- Magnetic field strength, [tex]\( B = 0.2 \)[/tex] Teslas (T)
- Time interval, [tex]\( \Delta t = 0.5 \)[/tex] seconds (s)
2. Calculate the Area of the Coil:
The area [tex]\( A \)[/tex] of a circle is given by:
[tex]\[ A = \pi \times r^2 \][/tex]
Substituting the given radius:
[tex]\[ A = \pi \times (0.2)^2 = 0.04\pi \, \text{m}^2 \][/tex]
3. Initial Magnetic Flux:
Magnetic flux [tex]\( \Phi \)[/tex] through the coil is given by:
[tex]\[ \Phi = B \times A \][/tex]
[tex]\[ \Phi_{\text{initial}} = 0.2 \times 0.04\pi = 0.008\pi \, \text{Wb} \, (\text{Weber}) \][/tex]
4. Final Magnetic Flux:
Since the coil is pulled out of the magnetic field, the final magnetic flux [tex]\( \Phi_{\text{final}} \)[/tex] is zero:
[tex]\[ \Phi_{\text{final}} = 0 \, \text{Wb} \][/tex]
5. Change in Magnetic Flux:
The change in magnetic flux [tex]\( \Delta \Phi \)[/tex] is:
[tex]\[ \Delta \Phi = \Phi_{\text{final}} - \Phi_{\text{initial}} = 0 - 0.008\pi = -0.008\pi \, \text{Wb} \][/tex]
6. Average Induced EMF:
According to Faraday's Law of Induction, the induced EMF [tex]\( \mathcal{E} \)[/tex] is given by:
[tex]\[ \mathcal{E} = -\frac{\Delta \Phi}{\Delta t} \][/tex]
Substituting the values:
[tex]\[ \mathcal{E} = -\left(-\frac{0.008\pi}{0.5}\right) = \frac{0.008\pi}{0.5} = 0.016\pi \, \text{V} \approx 0.0503 \, \text{V} \][/tex]
Hence, the average induced EMF during this interval is approximately [tex]\( 0.0503 \, \text{V} \)[/tex].
### Part (b)
#### Calculating the Motional EMF
1. Given Values:
- Length of the bar, [tex]\( l = 2 \)[/tex] meters (m)
- Speed of the bar, [tex]\( v = 5 \)[/tex] meters per second (m/s)
- Magnetic field strength, [tex]\( B = 0.2 \)[/tex] Teslas (T)
2. Motional EMF:
The motional EMF [tex]\( \mathcal{E}_{\text{motional}} \)[/tex] is given by:
[tex]\[ \mathcal{E}_{\text{motional}} = B \times l \times v \][/tex]
Substituting the values:
[tex]\[ \mathcal{E}_{\text{motional}} = 0.2 \times 2 \times 5 = 2 \, \text{V} \][/tex]
Therefore, the motional EMF induced in the bar and rails is [tex]\( 2 \, \text{V} \)[/tex].
### Summary:
a) The average induced EMF during the interval is approximately [tex]\( 0.0503 \, \text{V} \)[/tex] or [tex]\( 0.016\pi \, \text{V} \)[/tex].
b) The motional EMF induced in the bar and rails is [tex]\( 2 \, \text{V} \)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.