Get detailed and accurate responses to your questions on IDNLearn.com. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
To solve this problem, we need to utilize the relationship given: the volume of gas [tex]\( (V \, \text{cm}^3) \)[/tex] varies directly as its absolute temperature [tex]\( (T \, \text{K}) \)[/tex] and inversely as its pressure [tex]\( (P \, \text{kN/m}^2) \)[/tex].
This relationship can be expressed mathematically as:
[tex]\[ V = k \frac{T}{P} \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
First, let's determine the constant [tex]\( k \)[/tex] using the initial conditions provided:
- Initial volume, [tex]\( V_0 = 75 \, \text{cm}^3 \)[/tex]
- Initial pressure, [tex]\( P_0 = 40 \, \text{kN/m}^2 \)[/tex]
- Initial temperature, [tex]\( T_0 = 50 \, \text{K} \)[/tex]
Using the formula:
[tex]\[ k = \frac{V_0 \cdot P_0}{T_0} \][/tex]
Substitute the known values:
[tex]\[ k = \frac{75 \, \text{cm}^3 \cdot 40 \, \text{kN/m}^2}{50 \, \text{K}} \][/tex]
Now, we need to calculate the new volume and pressure in the subsequent parts:
### Part (i):
Find the volume collected at a pressure of [tex]\( 80 \, \text{kN/m}^2 \)[/tex] and temperature of [tex]\( 25 \, \text{K} \)[/tex].
Using the given relationship:
[tex]\[ V_1 = k \frac{T_1}{P_1} \][/tex]
Here:
- [tex]\( P_1 = 80 \, \text{kN/m}^2 \)[/tex]
- [tex]\( T_1 = 25 \, \text{K} \)[/tex]
Substitute the values:
[tex]\[ V_1 = \frac{k \cdot 25 \, \text{K}}{80 \, \text{kN/m}^2} \][/tex]
Simplifying the expression with the known value of [tex]\( k \)[/tex], we find:
[tex]\[ V_1 = 18.75 \, \text{cm}^3 \][/tex]
### Part (ii):
Find the pressure when the volume is [tex]\( 200 \, \text{cm}^3 \)[/tex] at a temperature of [tex]\( 100 \, \text{K} \)[/tex].
Using the same relationship rearranged for pressure:
[tex]\[ P_2 = k \frac{T_2}{V_2} \][/tex]
Here:
- [tex]\( V_2 = 200 \, \text{cm}^3 \)[/tex]
- [tex]\( T_2 = 100 \, \text{K} \)[/tex]
Substitute the values:
[tex]\[ P_2 = \frac{k \cdot 100 \, \text{K}}{200 \, \text{cm}^3} \][/tex]
Simplifying the expression with the known value of [tex]\( k \)[/tex], we find:
[tex]\[ P_2 = 30 \, \text{kN/m}^2 \][/tex]
Therefore, the solutions to the problem are:
(i) The volume collected at a pressure of [tex]\( 80 \, \text{kN/m}^2 \)[/tex] and temperature of [tex]\( 25 \, \text{K} \)[/tex] is [tex]\( 18.75 \, \text{cm}^3 \)[/tex].
(ii) The pressure when the volume is [tex]\( 200 \, \text{cm}^3 \)[/tex] at a temperature of [tex]\( 100 \, \text{K} \)[/tex] is [tex]\( 30 \, \text{kN/m}^2 \)[/tex].
This relationship can be expressed mathematically as:
[tex]\[ V = k \frac{T}{P} \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
First, let's determine the constant [tex]\( k \)[/tex] using the initial conditions provided:
- Initial volume, [tex]\( V_0 = 75 \, \text{cm}^3 \)[/tex]
- Initial pressure, [tex]\( P_0 = 40 \, \text{kN/m}^2 \)[/tex]
- Initial temperature, [tex]\( T_0 = 50 \, \text{K} \)[/tex]
Using the formula:
[tex]\[ k = \frac{V_0 \cdot P_0}{T_0} \][/tex]
Substitute the known values:
[tex]\[ k = \frac{75 \, \text{cm}^3 \cdot 40 \, \text{kN/m}^2}{50 \, \text{K}} \][/tex]
Now, we need to calculate the new volume and pressure in the subsequent parts:
### Part (i):
Find the volume collected at a pressure of [tex]\( 80 \, \text{kN/m}^2 \)[/tex] and temperature of [tex]\( 25 \, \text{K} \)[/tex].
Using the given relationship:
[tex]\[ V_1 = k \frac{T_1}{P_1} \][/tex]
Here:
- [tex]\( P_1 = 80 \, \text{kN/m}^2 \)[/tex]
- [tex]\( T_1 = 25 \, \text{K} \)[/tex]
Substitute the values:
[tex]\[ V_1 = \frac{k \cdot 25 \, \text{K}}{80 \, \text{kN/m}^2} \][/tex]
Simplifying the expression with the known value of [tex]\( k \)[/tex], we find:
[tex]\[ V_1 = 18.75 \, \text{cm}^3 \][/tex]
### Part (ii):
Find the pressure when the volume is [tex]\( 200 \, \text{cm}^3 \)[/tex] at a temperature of [tex]\( 100 \, \text{K} \)[/tex].
Using the same relationship rearranged for pressure:
[tex]\[ P_2 = k \frac{T_2}{V_2} \][/tex]
Here:
- [tex]\( V_2 = 200 \, \text{cm}^3 \)[/tex]
- [tex]\( T_2 = 100 \, \text{K} \)[/tex]
Substitute the values:
[tex]\[ P_2 = \frac{k \cdot 100 \, \text{K}}{200 \, \text{cm}^3} \][/tex]
Simplifying the expression with the known value of [tex]\( k \)[/tex], we find:
[tex]\[ P_2 = 30 \, \text{kN/m}^2 \][/tex]
Therefore, the solutions to the problem are:
(i) The volume collected at a pressure of [tex]\( 80 \, \text{kN/m}^2 \)[/tex] and temperature of [tex]\( 25 \, \text{K} \)[/tex] is [tex]\( 18.75 \, \text{cm}^3 \)[/tex].
(ii) The pressure when the volume is [tex]\( 200 \, \text{cm}^3 \)[/tex] at a temperature of [tex]\( 100 \, \text{K} \)[/tex] is [tex]\( 30 \, \text{kN/m}^2 \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.