IDNLearn.com offers a comprehensive solution for finding accurate answers quickly. Discover comprehensive answers from knowledgeable members of our community, covering a wide range of topics to meet all your informational needs.
Sagot :
To determine the wavelength of light emitted when an electron in a hydrogen atom transitions from the energy level [tex]\(n=5\)[/tex] to [tex]\(n=1\)[/tex], we can use the Rydberg formula for hydrogen:
[tex]\[ \frac{1}{\lambda} = R \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \][/tex]
Where:
- [tex]\(\lambda\)[/tex] is the wavelength of the emitted light,
- [tex]\(R\)[/tex] is the Rydberg constant (approximately [tex]\(1.097373 \times 10^7 \, \text{m}^{-1}\)[/tex]),
- [tex]\(n_i\)[/tex] is the initial energy level (in this case, [tex]\(n_i = 5\)[/tex]),
- [tex]\(n_f\)[/tex] is the final energy level (in this case, [tex]\(n_f = 1\)[/tex]).
Let's plug in the given values:
[tex]\[ R \approx 1.097373 \times 10^7 \, \text{m}^{-1} \][/tex]
[tex]\[ n_i = 5 \][/tex]
[tex]\[ n_f = 1 \][/tex]
Using these values in the Rydberg formula, the equation becomes:
[tex]\[ \frac{1}{\lambda} = 1.097373 \times 10^7 \left( \frac{1}{1^2} - \frac{1}{5^2} \right) \][/tex]
First, calculate the terms inside the parentheses:
[tex]\[ \frac{1}{1^2} = 1 \][/tex]
[tex]\[ \frac{1}{5^2} = \frac{1}{25} = 0.04 \][/tex]
So,
[tex]\[ \frac{1}{\lambda} = 1.097373 \times 10^7 \left( 1 - 0.04 \right) = 1.097373 \times 10^7 \times 0.96 \][/tex]
Next, calculate the product:
[tex]\[ \frac{1}{\lambda} \approx 1.05347808 \times 10^7 \, \text{m}^{-1} \][/tex]
Taking the reciprocal to find [tex]\(\lambda\)[/tex]:
[tex]\[ \lambda \approx \frac{1}{1.05347808 \times 10^7} \approx 9.4923651 \times 10^{-8} \, \text{m} \][/tex]
Thus, the wavelength of light that is emitted is approximately [tex]\(9.492 \times 10^{-8} \, \text{m}\)[/tex].
Among the given options, the closest value to this result is:
[tex]\[ \boxed{9.50 \times 10^{-8} \, \text{m}} \][/tex]
[tex]\[ \frac{1}{\lambda} = R \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \][/tex]
Where:
- [tex]\(\lambda\)[/tex] is the wavelength of the emitted light,
- [tex]\(R\)[/tex] is the Rydberg constant (approximately [tex]\(1.097373 \times 10^7 \, \text{m}^{-1}\)[/tex]),
- [tex]\(n_i\)[/tex] is the initial energy level (in this case, [tex]\(n_i = 5\)[/tex]),
- [tex]\(n_f\)[/tex] is the final energy level (in this case, [tex]\(n_f = 1\)[/tex]).
Let's plug in the given values:
[tex]\[ R \approx 1.097373 \times 10^7 \, \text{m}^{-1} \][/tex]
[tex]\[ n_i = 5 \][/tex]
[tex]\[ n_f = 1 \][/tex]
Using these values in the Rydberg formula, the equation becomes:
[tex]\[ \frac{1}{\lambda} = 1.097373 \times 10^7 \left( \frac{1}{1^2} - \frac{1}{5^2} \right) \][/tex]
First, calculate the terms inside the parentheses:
[tex]\[ \frac{1}{1^2} = 1 \][/tex]
[tex]\[ \frac{1}{5^2} = \frac{1}{25} = 0.04 \][/tex]
So,
[tex]\[ \frac{1}{\lambda} = 1.097373 \times 10^7 \left( 1 - 0.04 \right) = 1.097373 \times 10^7 \times 0.96 \][/tex]
Next, calculate the product:
[tex]\[ \frac{1}{\lambda} \approx 1.05347808 \times 10^7 \, \text{m}^{-1} \][/tex]
Taking the reciprocal to find [tex]\(\lambda\)[/tex]:
[tex]\[ \lambda \approx \frac{1}{1.05347808 \times 10^7} \approx 9.4923651 \times 10^{-8} \, \text{m} \][/tex]
Thus, the wavelength of light that is emitted is approximately [tex]\(9.492 \times 10^{-8} \, \text{m}\)[/tex].
Among the given options, the closest value to this result is:
[tex]\[ \boxed{9.50 \times 10^{-8} \, \text{m}} \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.