Get comprehensive answers to your questions with the help of IDNLearn.com's community. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.
Sagot :
To solve this problem step-by-step:
1. State the hypotheses:
- Null hypothesis ([tex]\( H_0 \)[/tex]): [tex]\(\mu = 125500\)[/tex]
- Alternative hypothesis ([tex]\( H_a \)[/tex]): [tex]\(\mu \neq 125500\)[/tex]
2. Given data:
- Population mean ([tex]\(\mu_0\)[/tex]): [tex]\( 125500 \)[/tex]
- Sample mean ([tex]\(\bar{x}\)[/tex]): [tex]\( 126584.4 \)[/tex]
- Population standard deviation ([tex]\(\sigma\)[/tex]): [tex]\( 4000 \)[/tex]
- Sample size ([tex]\( n \)[/tex]): [tex]\( 60 \)[/tex]
- Significance level ([tex]\(\alpha\)[/tex]): [tex]\( 0.05 \)[/tex]
3. Calculate the standard error of the mean:
[tex]\[ \text{Standard Error (SE)} = \frac{\sigma}{\sqrt{n}} = \frac{4000}{\sqrt{60}} = 516.3978 \][/tex]
4. Calculate the test statistic (z-score):
[tex]\[ z = \frac{\bar{x} - \mu_0}{\text{SE}} = \frac{126584.4 - 125500}{516.3978} = 2.0999 \][/tex]
Reported to 3 decimal places: [tex]\( z = 2.100 \)[/tex]
5. Find the p-value for the calculated z-score in a two-tailed test:
[tex]\[ \text{p-value} = 2 \times \left(1 - \Phi(|z|)\right) \][/tex]
where [tex]\(\Phi\)[/tex] is the cumulative distribution function (CDF) of the standard normal distribution.
Plugging in the value:
[tex]\[ \text{p-value} = 2 \times (1 - \Phi(2.0999)) \approx 0.0357 \][/tex]
6. Compare the p-value with the significance level:
- The p-value [tex]\( \approx 0.0357 \)[/tex]
- Since [tex]\( 0.0357 < 0.05 \)[/tex]
Therefore, the required answers are:
- The test statistic for this sample: [tex]\( \boxed{2.100} \)[/tex]
- The p-value for this sample: [tex]\( \boxed{0.0357} \)[/tex]
- The p-value is less than (or equal to) [tex]\(\alpha\)[/tex]
1. State the hypotheses:
- Null hypothesis ([tex]\( H_0 \)[/tex]): [tex]\(\mu = 125500\)[/tex]
- Alternative hypothesis ([tex]\( H_a \)[/tex]): [tex]\(\mu \neq 125500\)[/tex]
2. Given data:
- Population mean ([tex]\(\mu_0\)[/tex]): [tex]\( 125500 \)[/tex]
- Sample mean ([tex]\(\bar{x}\)[/tex]): [tex]\( 126584.4 \)[/tex]
- Population standard deviation ([tex]\(\sigma\)[/tex]): [tex]\( 4000 \)[/tex]
- Sample size ([tex]\( n \)[/tex]): [tex]\( 60 \)[/tex]
- Significance level ([tex]\(\alpha\)[/tex]): [tex]\( 0.05 \)[/tex]
3. Calculate the standard error of the mean:
[tex]\[ \text{Standard Error (SE)} = \frac{\sigma}{\sqrt{n}} = \frac{4000}{\sqrt{60}} = 516.3978 \][/tex]
4. Calculate the test statistic (z-score):
[tex]\[ z = \frac{\bar{x} - \mu_0}{\text{SE}} = \frac{126584.4 - 125500}{516.3978} = 2.0999 \][/tex]
Reported to 3 decimal places: [tex]\( z = 2.100 \)[/tex]
5. Find the p-value for the calculated z-score in a two-tailed test:
[tex]\[ \text{p-value} = 2 \times \left(1 - \Phi(|z|)\right) \][/tex]
where [tex]\(\Phi\)[/tex] is the cumulative distribution function (CDF) of the standard normal distribution.
Plugging in the value:
[tex]\[ \text{p-value} = 2 \times (1 - \Phi(2.0999)) \approx 0.0357 \][/tex]
6. Compare the p-value with the significance level:
- The p-value [tex]\( \approx 0.0357 \)[/tex]
- Since [tex]\( 0.0357 < 0.05 \)[/tex]
Therefore, the required answers are:
- The test statistic for this sample: [tex]\( \boxed{2.100} \)[/tex]
- The p-value for this sample: [tex]\( \boxed{0.0357} \)[/tex]
- The p-value is less than (or equal to) [tex]\(\alpha\)[/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.