Join the conversation on IDNLearn.com and get the answers you seek from experts. Get comprehensive answers to all your questions from our network of experienced experts.

Consider the following reaction that occurs at 298 K:

[tex]\[2 \text{SOCl}_2(g) \rightarrow 2 \text{SCl}_2(g) + \text{O}_2(g)\][/tex]

Given that [tex]\(\Delta S^{\circ} = 134 \frac{J}{K}\)[/tex], use the following information to predict at what temperature the reaction becomes spontaneous:

[tex]\[\Delta G_f^{\circ} (\text{SOCl}_2) = -202.85 \frac{kJ}{mol}\][/tex]

[tex]\[\Delta G_f^{\circ} (\text{SCl}_2) = -83.22 \frac{kJ}{mol}\][/tex]


Sagot :

To determine the temperature at which the given reaction becomes spontaneous, we need to analyze the Gibbs free energy changes and the entropy change associated with the reaction.

Given the reaction:
[tex]\[ 2 \text{SOCl}_2(g) \rightarrow 2 \text{SCl}_2(g) + \text{O}_2(g) \][/tex]

And the provided data:
- [tex]\(\Delta S^{\circ} = 134 \frac{J}{K}\)[/tex]
- [tex]\(\Delta G_f^{\circ}(\text{SOCl}_2) = -202.85 \frac{kJ}{mol}\)[/tex]
- [tex]\(\Delta G_f^{\circ}(\text{SCl}_2) = -83.22 \frac{kJ}{mol}\)[/tex]

First, we need to convert the Gibbs free energy of formation values from kJ to J:
[tex]\[ \Delta G_f^{\circ}(\text{SOCl}_2) = -202.85 \frac{kJ}{mol} \times 1000 \frac{J}{kJ} = -202850 \frac{J}{mol} \][/tex]
[tex]\[ \Delta G_f^{\circ}(\text{SCl}_2) = -83.22 \frac{kJ}{mol} \times 1000 \frac{J}{kJ} = -83220 \frac{J}{mol} \][/tex]

Next, calculate the Gibbs free energy change for the reactants and products:
- For the reactants ([tex]\(2 \text{SOCl}_2\)[/tex]):
[tex]\[ \Delta G_{\text{reactants}} = 2 \times \Delta G_f^{\circ}(\text{SOCl}_2) = 2 \times (-202850 \frac{J}{mol}) = -405700 \frac{J}{mol} \][/tex]

- For the products ([tex]\(2 \text{SCl}_2 + \text{O}_2\)[/tex]):
[tex]\(\Delta G_f^{\circ}\)[/tex] for [tex]\( \text{O}_2(g) \)[/tex] in its standard state is zero, so:
[tex]\[ \Delta G_{\text{products}} = 2 \times \Delta G_f^{\circ}(\text{SCl}_2) = 2 \times (-83220 \frac{J}{mol}) = -166440 \frac{J}{mol} \][/tex]

Now, calculate the Gibbs free energy change for the reaction ([tex]\(\Delta G_{\text{rxn}}\)[/tex]):
[tex]\[ \Delta G_{\text{rxn}} = \Delta G_{\text{products}} - \Delta G_{\text{reactants}} \][/tex]
[tex]\[ \Delta G_{\text{rxn}} = -166440 \frac{J}{mol} - (-405700 \frac{J}{mol}) = 239260 \frac{J}{mol} \][/tex]

To determine the temperature at which the reaction becomes spontaneous, we use the relationship between Gibbs free energy ([tex]\(\Delta G\)[/tex]), enthalpy ([tex]\(\Delta H\)[/tex]), and entropy ([tex]\(\Delta S\)[/tex]):
[tex]\[ \Delta G_{\text{rxn}} = \Delta H_{\text{rxn}} - T \Delta S_{\text{rxn}} \][/tex]

For the reaction to be spontaneous, [tex]\(\Delta G_{\text{rxn}} < 0\)[/tex]. Therefore, we need to find the temperature at which [tex]\(\Delta G_{\text{rxn}}\)[/tex] becomes zero:
[tex]\[ 0 = \Delta H_{\text{rxn}} - T \Delta S_{\text{rxn}} \][/tex]
[tex]\[ T_{\text{spontaneous}} = \frac{\Delta H_{\text{rxn}}}{\Delta S_{\text{rxn}}} \][/tex]

Since [tex]\(\Delta G_{\text{rxn}}\)[/tex] at 298 K is known, we can use this to find [tex]\(\Delta H_{\text{rxn}}\)[/tex]:
[tex]\[ \Delta G_{\text{rxn}} = \Delta H_{\text{rxn}} - 298 K \times \Delta S^{\circ} \][/tex]
Solving for [tex]\(\Delta H_{\text{rxn}}\)[/tex]:
[tex]\[ \Delta H_{\text{rxn}} = \Delta G_{\text{rxn}} + 298 K \times \Delta S^{\circ} \][/tex]
But we can solve directly using the given delta_G_rxn (at T=0):
[tex]\[ T_{\text{spontaneous}} = \frac{\Delta G_{\text{rxn}}}{\Delta S^{\circ}} = \frac{239260 \frac{J}{mol}}{134 \frac{J}{K \cdot mol}} \][/tex]
[tex]\[ T_{\text{spontaneous}} \approx 1785.52 K \][/tex]

Therefore, the temperature at which the reaction becomes spontaneous is approximately 1785.52 K.