IDNLearn.com: Your trusted platform for finding precise and reliable answers. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
To determine the standard Gibbs free energy change ([tex]\(\Delta G^\circ\)[/tex]) for the given reaction at equilibrium, follow these steps:
### Step 1: Write down the balanced chemical equation.
For the reaction:
[tex]\[ P_2(g) + 3 Cl_2(g) \rightarrow 2 PCl_3(g) \][/tex]
### Step 2: Note the partial pressures of each gas at equilibrium.
Given:
- [tex]\( P_{P_2} = 0.0268 \)[/tex] atm
- [tex]\( P_{Cl_2} = 0.0689 \)[/tex] atm
- [tex]\( P_{PCl_3} = 0.399 \)[/tex] atm
### Step 3: Determine the reaction quotient, [tex]\( Q \)[/tex].
For the reaction quotient, [tex]\( Q \)[/tex], we need to use the partial pressures provided. The reaction quotient for gases is given by:
[tex]\[ Q = \frac{(P_{PCl_3})^2}{P_{P_2} \times (P_{Cl_2})^3} \][/tex]
Substitute the given pressures into the equation:
[tex]\[ Q = \frac{(0.399)^2}{(0.0268) \times (0.0689)^3} \][/tex]
### Step 4: Calculate [tex]\( Q \)[/tex].
Using the provided result:
[tex]\[ Q \approx 18161.5676 \][/tex]
### Step 5: Use the relationship between [tex]\( \Delta G^\circ \)[/tex] and [tex]\( Q \)[/tex].
The standard Gibbs free energy change is calculated using the equation:
[tex]\[ \Delta G^\circ = -RT \ln(Q) \][/tex]
Where:
- [tex]\( R \)[/tex] is the universal gas constant [tex]\( 8.314 \)[/tex] J/(mol·K)
- [tex]\( T \)[/tex] is the temperature in Kelvin, which is [tex]\( 880 \)[/tex] K
- [tex]\( Q \)[/tex] is the reaction quotient
### Step 6: Calculate [tex]\( \Delta G^\circ \)[/tex].
Plug in the values:
[tex]\[ \Delta G^\circ = - (8.314 \, \text{J/(mol·K)}) \times 880 \, \text{K} \times \ln(18161.5676) \][/tex]
Referring to the provided answer:
[tex]\[ \Delta G^\circ \approx -71751.61 \, \text{J/mol} \][/tex]
OR
[tex]\[ \Delta G^\circ \approx -71.75 \, \text{kJ/mol} \][/tex] (since [tex]\( 1 \, \text{kJ} = 1000 \, \text{J} \)[/tex]).
### Final Answer:
The standard Gibbs free energy change ([tex]\(\Delta G^\circ\)[/tex]) for the reaction at 880 K is approximately [tex]\(-71751.61 \, \text{J/mol}\)[/tex] or [tex]\(-71.75 \, \text{kJ/mol}\)[/tex].
### Step 1: Write down the balanced chemical equation.
For the reaction:
[tex]\[ P_2(g) + 3 Cl_2(g) \rightarrow 2 PCl_3(g) \][/tex]
### Step 2: Note the partial pressures of each gas at equilibrium.
Given:
- [tex]\( P_{P_2} = 0.0268 \)[/tex] atm
- [tex]\( P_{Cl_2} = 0.0689 \)[/tex] atm
- [tex]\( P_{PCl_3} = 0.399 \)[/tex] atm
### Step 3: Determine the reaction quotient, [tex]\( Q \)[/tex].
For the reaction quotient, [tex]\( Q \)[/tex], we need to use the partial pressures provided. The reaction quotient for gases is given by:
[tex]\[ Q = \frac{(P_{PCl_3})^2}{P_{P_2} \times (P_{Cl_2})^3} \][/tex]
Substitute the given pressures into the equation:
[tex]\[ Q = \frac{(0.399)^2}{(0.0268) \times (0.0689)^3} \][/tex]
### Step 4: Calculate [tex]\( Q \)[/tex].
Using the provided result:
[tex]\[ Q \approx 18161.5676 \][/tex]
### Step 5: Use the relationship between [tex]\( \Delta G^\circ \)[/tex] and [tex]\( Q \)[/tex].
The standard Gibbs free energy change is calculated using the equation:
[tex]\[ \Delta G^\circ = -RT \ln(Q) \][/tex]
Where:
- [tex]\( R \)[/tex] is the universal gas constant [tex]\( 8.314 \)[/tex] J/(mol·K)
- [tex]\( T \)[/tex] is the temperature in Kelvin, which is [tex]\( 880 \)[/tex] K
- [tex]\( Q \)[/tex] is the reaction quotient
### Step 6: Calculate [tex]\( \Delta G^\circ \)[/tex].
Plug in the values:
[tex]\[ \Delta G^\circ = - (8.314 \, \text{J/(mol·K)}) \times 880 \, \text{K} \times \ln(18161.5676) \][/tex]
Referring to the provided answer:
[tex]\[ \Delta G^\circ \approx -71751.61 \, \text{J/mol} \][/tex]
OR
[tex]\[ \Delta G^\circ \approx -71.75 \, \text{kJ/mol} \][/tex] (since [tex]\( 1 \, \text{kJ} = 1000 \, \text{J} \)[/tex]).
### Final Answer:
The standard Gibbs free energy change ([tex]\(\Delta G^\circ\)[/tex]) for the reaction at 880 K is approximately [tex]\(-71751.61 \, \text{J/mol}\)[/tex] or [tex]\(-71.75 \, \text{kJ/mol}\)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.